Impact of Flipped Classroom in the Teaching-Learning Process on Karnaugh’s Maps
DOI:
https://doi.org/10.15359/ree.25-2.14Keywords:
Flipped classroom, educational technology, data science, teaching, higher learningAbstract
This quantitative design research analyzes flipped classroom’s effects in the teaching-learning process on Karnaugh’s maps considering data science, neural networks, and machine learning (linear regression). In machine learning, the training section used 60%, 70%, and 80% of the sample to test the research hypotheses. Karnaugh’s maps allow identifying the logical function that minimizes the number of electronic components used during the digital circuits’ construction. The general aim is to implement and analyze the use of the flipped classroom in the educational process on Karnaugh’s maps. The sample is composed of 26 students from the Executive Degree in Computational Systems. The students were enrolled in the Sequential and Combinatorial Logic course at a Mexican university. This research proposes the implementation of a flipped classroom using the consultation of YouTube videos (before the class), use of the protoboard in a collaborative mode (during the class), and use of the Crocodile Clips software (after the class). The protoboard is a test plate that allows the construction of digital circuits, and Crocodile Clips software allows performing various simulations on digital circuits’ operation. Machine learning results indicate that flipped classrooms positively influence the student’s active role and motivation during the learning process. Data science identifies six predictive models on flipped classrooms employing the decision tree technique. The information about the student’s profile (sex and age) and use of the tools (YouTube videos, breadboard, and Crocodile Clips software) allow the construction of these models. Likewise, neural networks identify the flipped classroom aspects that influence the student’s active role and motivation. Finally, flipped classrooms improve the teaching-learning conditions through the consultation of YouTube videos, the use of the protoboard in a collaborative way, and the Crocodile Clips software.
References
Akçayir, G. y Akçayir, M. (2018). The flipped classroom: A review of its advantages and challenges. Computers & Education, 126, 334-345. https://doi.org/10.1016/j.compedu.2018.07.021
Akyuz, D. (2018). Measuring technological pedagogical content knowledge (TPACK) through performance assessment. Computers & Education, 125, 212-225. https://doi.org/10.1016/j.compedu.2018.06.012
Boz, B. y Adnan, M. (2017). How do freshman engineering students reflect an online calculus course? International Journal of Education in Mathematics, Science and Technology (IJEMST), 5(4), 262-278. https://www.ijemst.net/index.php/ijemst/article/view/99/100
Guy, R. y Marquis, G. (2016). The flipped classroom: A comparison of student performance using instructional videos and podcasts versus the lecture-based model of instruction. Issues in Informing Science and Information Technology, 13, 1-13. https://doi.org/10.28945/3461
Hodgson, T. R., Cunningham, A., McGee, D., Kinne, L. J. y Murphy, T. J. (2017). Assessing behavioral engagement in flipped and non-flipped mathematics classrooms: Teacher abilities and other potential factors. International Journal of Education in Mathematics, Science and Technology (IJEMST), 5(4), 248-261. https://www.ijemst.net/index.php/ijemst/issue/view/22
Karabulut-Ilgu, A., Jaramillo Cherrez, N. y Hassall, L. (2018). Flipping to engage students: Instructor perspectives on flipping large enrollment courses. Australasian Journal of Educational Technology, 34(4), 123-137. https://doi.org/10.14742/ajet.4036
Kim, D. (2017). Flipped interpreting classroom: Flipping approaches, student perceptions and design considerations. The Interpreter and Translator Trainer, 11(1), 38-55. https://doi.org/10.1080/1750399X.2016.1198180
Nelson, M. J., Voithofer, R. y Cheng, S.-L. (2019). Mediating factors that influence the technology integration practices of teacher educators. Computers & Education, 128, 330-344. https://doi.org/10.1016/j.compedu.2018.09.023
Reyes, V. C., Jr., Reading, C., Doyle, H. y Gregory, S. (2017). Integrating ICT into teacher education programs from a TPACK perspective: Exploring perceptions of university lecturers. Computers & Education, 115, 1-19. https://doi.org/10.1016/j.compedu.2017.07.009
Salas-Rueda, R.-A. (2019). Construction and evaluation of a web application for the educational process on normal distribution considering the science of data and machine learning. Research in Learning Technology, 27, 1-24. https://doi.org/10.25304/rlt.v27.2085
Salas Rueda, R. A. (2020). Use of the flipped classroom to design creative and active activities in the field of computer science. Creativity studies, 13(1), 136-151. https://doi.org/10.3846/cs.2020.10336
Salas-Rueda, R.-A., Gamboa-Rodríguez, F., Salas-Rueda, É.-P. y Salas-Rueda, R. D. (2020). Diseño de una aplicación web para el proceso educativo sobre el uso del logaritmo en el campo de las matemáticas financieras. Texto Livre: Linguajem e Tecnologia, 13(1), 65-81. https://doi.org/10.17851/1983-3652.13.1.65-81
Salas-Rueda, R.-A., Ramírez-Ortega, J. y Eslava-Cervantes, A.-L. (2021). Use of the collaborative wall to improve the teaching-learning conditions in the bachelor of visual arts. Contemporary Educational Technology, 13(1), 1-10. https://doi.org/10.30935/cedtech/8711
Salas-Rueda, R.-A., Salas-Rueda, E.-P. y Salas-Rueda, R.-D. (2019). Diseño y uso de una aplicación web para el campo de la estadística considerando el modelo Assure y la ciencia de datos. Texto Livre: Linguagem e Tecnologia, 12(1), 48-71. https://doi.org/10.17851/1983-3652.12.1.48-71
Salas Rueda, R. A., Vázquez Estupiñán, J. de J. y Lugo García, J. L. (2016). Uso del avatar en el proceso de enseñanza-aprendizaje sobre las aplicaciones de las derivadas. Revista de Comunicación de la SEECI, 20(39), 72-88. https://doi.org/10.15198/seeci.2016.39.72-88
Samaniego, G., Marqués, L. y Gisbert, M. (2015). El profesorado universitario y el uso de entornos virtuales de aprendizaje. Campus Virtuales, 4(2), 50-58. http://uajournals.com/ojs/index.php/campusvirtuales/article/view/84/92
Schwartz, T. A., Ajazi, E. y Monaco, J. (2018). Findings from a survey of statistics and biostatistics instructors in the health sciences who teach using an online or flipped format. Journal of Statistics Education, 26(2), 143-148. https://doi.org/10.1080/10691898.2018.1484675
Schwartz, T. A., Andridge, R. R., Sainani, K. L., Stangle, D. K. y Neely, M. L. (2016). Diverse perspectives on a flipped biostatistics classroom. Journal of Statistics Education, 24(2), 74-84. https://doi.org/10.1080/10691898.2016.1192362
Sharp, L. A. y Hamil, M. (2018). Impact of a web-based adaptive supplemental digital resource on student mathematics performance. Online Learning, 22(1), 81-92. https://doi.org/10.24059/olj.v22i1.1133
Shih, W.-L y Tsai, C.-Y. (2017). Students’ perception of a flipped classroom approach to facilitating online project-based learning in marketing research courses. Australasian Journal of Educational Technology, 33(5), 32-49. https://doi.org/10.14742/ajet.2884
Smith, C., Crocker, S. y Allman, T. (2017). Reading between the lines: Accessing information via YouTube’s automatic captioning. Online Learning, 21(1), 115-131. https://doi.org/10.24059/olj.v21i1.823
Tanner, M. y Scott, E. (2015). A flipped classroom approach to teaching systems analysis, design and implementation. Journal of Information Technology Education: Research, 14, 219-241. https://doi.org/10.28945/2266
Tibi, M. H. (2018). Computer science students’ attitudes towards the use of structured and unstructured discussion forums in online courses. Online Learning, 22(1), 93-106. https://doi.org/10.24059/olj.v22i1.995
Urbina, S., Arrabal, M., Conde, M., Ordinas, C. y Rodríguez, S. (2015). Flipped classroom a través de videoconferencia: Un proyecto de innovación docente. Campus Virtuales, 4(2), 60-65. https://dialnet.unirioja.es/servlet/articulo?codigo=5237332
Yang, C. C. R. (2017). An investigation of the use of the ‘flipped classroom’ pedagogy in secondary english language classrooms. Journal of Information Technology Education: Innovations in Practice, 16, 1-20. https://doi.org/10.28945/3635
Zainuddin, Z. (2018). Students’ learning performance and perceived motivation in gamified flipped-class instruction. Computers & Education, 126, 75-88. https://doi.org/10.1016/j.compedu.2018.07.003
Downloads
Published
How to Cite
Issue
Section
License
1. In case the submitted paper is accepted for publication, the author(s) FREELY, COSTLESS, EXCLUSIVELY AND FOR AN INDEFINITE TERM transfer copyrights and patrimonial rights to Universidad Nacional (UNA, Costa Rica). For more details check the Originality Statement and Copyright Transfer Agreement
2. REUTILIZATION RIGHTS: UNA authorizes authors to use, for any purpose (among them selfarchiving or autoarchiving) and to publish in the Internet in any electronic site, the paper´'s final version, both approved and published (post print), as long as it is done with a non commercial purpose, does not generate derivates without previous consentment and recognizes both publisher's name and authorship.
3. The submission and possible publication of the paper in the Educare Electronic Journal is ruled by the Journal’s editorial policies, the institutional rules of Universidad Nacional and the laws of the Republic of Costa Rica. Additionally, any possible difference of opinion or future dispute shall be settled in accordance with the mechanisms of Alternative Dispute Resolution and the Costa Rican Jurisdiction.
4. In all cases, it is understood that the opinions issued are those of the authors and do not necessarily reflect the position and opinion of Educare, CIDE or Universidad Nacional, Costa Rica. It is also understood that, in the exercise of academic freedom, the authors have carried out a rogorous scientific-academic process of research, reflection and argumentation thar lays within the thematic scope of interest of the Journal.
5. The papers published by Educare Electronic Journal use a Creative Commons License: