A Model of Teaching Practices for Results-based Accreditation in Engineering Careers
DOI:
https://doi.org/10.15359/ree.26-3.30Keywords:
Result-based accreditation, attributes of graduation, competencies of graduation, teaching strategies, engineering, professional profile, teaching practicesAbstract
Objective. This work consists of a state of the question created to understand how teaching practices guide the development of the training process for the completion of the professional profile in engineering careers. Analysis. Writing this paper began with a bibliographic review of academic articles from the best-positioned journals in engineering education, considering publications from 2008 to 2018. Subsequently, in the selected publications, common lines of research are determined. In each of these, coincidences and differences in the theoretical and methodological approaches and the main findings are identified. Results. This article includes a discussion on the characterization of competencies or attributes in the engineering knowledge area and the identification of two important lines of research: the implementation of teaching practices for the development of specific competence and the understanding of the actors’ beliefs regarding the development of competencies or attributes. These lines are related since they can be considered as stages of a systematic improvement process for teaching practices based on the feedback obtained from the various perceptions of the actors. However, it is identified that they have not been addressed in an integrated manner from empirical research yet. Conclusions. Based on the findings and good practices identified through the analyzed empirical research, a model of teaching practices can be proposed for result-based accreditation, which includes a cycle of integration of the attributes comprising an improvement process where three pillars stand out: theoretical bases, teaching and learning, and the evaluative framework.
References
Adams, J., Kaczmarczyk, S., Picton, P. y Demian, P. (2010). Problem solving and creativity in engineering: Conclusions of a threeyear project involving reusable learning objects and robots. Engineering Education, 5(2), 4-17. https://doi.org/10.11120/ened.2010.05020004
Atkinson, H. y Pennington, M. (2012). Unemployment of engineering graduates: The key issues. Engineering Education, 7(2), 7-15. https://doi.org/10.11120/ened.2012.07020007
Campbell, A. (2010). Developing generic skills and attributes of international students: The (ir) relevance of the Australian university experience. Journal of Higher Education Policy and Management, 32(5), 487-497. https://doi.org/10.1080/1360080X.2010.511121
Coetzee, M. (2014). Measuring student graduateness: Reliability and construct validity of the graduate skills and attributes scale. Higher Education Research & Development, 33(5), 887-902. https://doi.org/10.1080/07294360.2014.890572
Creasey, R. (2013). Improving students’ employability. Engineering Education, 8(1), 16-30. https://doi.org/10.11120/ened.2013.00006
De la Harpe, B. y David, C. (2012). Major influences on the teaching and assessment of graduate attributes. Higher Education Research & Development, 31(4), 493-510. https://doi.org/10.1080/07294360.2011.629361
Easa, S. M. (2013). Framework and guidelines for graduate attribute assessment in engineering education. Canadian Journal of Civil Engineering, 40(6), 547-556. https://doi.org/10.1139/cjce-2012-0485
European Higher Education Area (9 de diciembre de 2020). How does the Bologna process work? http://ehea.info/page-how-does-the-bologna-process-work
Fraser, K. y Thomas, T. (2013). Challenges of assuring the development of graduate attributes in a bachelor of arts. Higher Education Research & Development, 32(4), 545-560. https://doi.org/10.1080/07294360.2012.704594
Gibbings, P., Lidstone, J. y Bruce, C. (2010). How do student attributes influence the way students experience problem-based learning in virtual space? Australasian Journal of Engineering Education, 16(1), 69-80. https://doi.org/10.1080/22054952.2010.11464036
Govan, M. (2016). The application of peer teaching in digital forensics education. Higher Education Pedagogies, 1(1), 57-63. https://doi.org/10.1080/23752696.2015.1134198
International Engineering Alliance. (9 de diciembre de 2020). 25 years Washington accord. https://www.ieagreements.org/accords/washington/
Joyce, T., Evans, I., Pallan, W. y Hopkins, C. (2013). A hands-on project-based mechanical engineering design module focusing on sustainability. Engineering Education, 8(1), 65-80. https://doi.org/10.11120/ened.2013.00008
Letelier, M. F., Herrera, J. A., Canales, A. M., Carrasco, R. y López, L. L. (2003). Competencies evaluation in engineering programmes. European Journal of Engineering Education, 28(3), 275-286. https://doi.org/10.1080/0304379031000098247
Leung, M.-Y., Chen, D. y Chan, I. Y. S. (2011). Attributes of Hong Kong construction engineering student learning approaches: Investigation of Chinese and western personal values. Journal of Professional Issues in Engineering Education and Practice, 138(3), 224-233. https://doi.org/10.1061/(ASCE)EI.1943-5541.0000103
Lunev, A., Petrova, I. y Zaripova, V. (2013). Competency-based models of learning for engineers: a comparison. European journal of engineering education, 38(5), 543-555. https://doi.org/10.1080/03043797.2013.824410
Mello, L. V., Tregilgas, L., Cowley, G., Gupta, A., Makki, F., Jhutty, A. y Shanmugasundram, A. (2017). ‘Students-as-partners’ scheme enhances postgraduate students’ employability skills while addressing gaps in bioinformatics education. Higher education pedagogies, 2(1), 43-57. https://doi.org/10.1080/23752696.2017.1339287
Platow, M. J. (2012). PhD experience and subsequent outcomes: A look at self-perceptions of acquired graduate attributes and supervisor support. Studies in Higher Education, 37(1), 103-118. https://doi.org/10.1080/03075079.2010.501104
Tshai, K. Y., Ho, J.-H., Yap, E. H. y Ng, H. K. (2014). Outcome-based education–The assessment of programme educational objectives for an engineering undergraduate degree. Engineering Education, 9(1), 74-85. https://doi.org/10.11120/ened.2014.00020
Downloads
Published
How to Cite
Issue
Section
License
1. In case the submitted paper is accepted for publication, the author(s) FREELY, COSTLESS, EXCLUSIVELY AND FOR AN INDEFINITE TERM transfer copyrights and patrimonial rights to Universidad Nacional (UNA, Costa Rica). For more details check the Originality Statement and Copyright Transfer Agreement
2. REUTILIZATION RIGHTS: UNA authorizes authors to use, for any purpose (among them selfarchiving or autoarchiving) and to publish in the Internet in any electronic site, the paper´'s final version, both approved and published (post print), as long as it is done with a non commercial purpose, does not generate derivates without previous consentment and recognizes both publisher's name and authorship.
3. The submission and possible publication of the paper in the Educare Electronic Journal is ruled by the Journal’s editorial policies, the institutional rules of Universidad Nacional and the laws of the Republic of Costa Rica. Additionally, any possible difference of opinion or future dispute shall be settled in accordance with the mechanisms of Alternative Dispute Resolution and the Costa Rican Jurisdiction.
4. In all cases, it is understood that the opinions issued are those of the authors and do not necessarily reflect the position and opinion of Educare, CIDE or Universidad Nacional, Costa Rica. It is also understood that, in the exercise of academic freedom, the authors have carried out a rogorous scientific-academic process of research, reflection and argumentation thar lays within the thematic scope of interest of the Journal.
5. The papers published by Educare Electronic Journal use a Creative Commons License: