Artificial Neural Network Model to Predict Academic Results in Mathematics II
DOI:
https://doi.org/10.15359/ree.27-1.14516Keywords:
Red neuronal artificial, rendimiento académico, predicciónAbstract
Objective. This article shows the design and training of an artificial neural network (ANN) to predict academic results of Civil Engineering students of the Fabiola Salazar Leguía National Intercultural University, from Bagua-Peru, in the subject of Mathematics II. Method. The CRISP-DM methodology was used, surveys were conducted to collect the data, and the RNA model was implemented in the Matlab software using the nnstart command and two learning algorithms: Scaled Conjugate Gradient (SCG) and Levenberg-Marquardt (LM). The performance of the model was evaluated through the mean square error and the correlation coefficient. Conclusions. The LM algorithm achieved better prediction effectiveness.
References
Acevedo Pierart, C. G. y Rocha Pavés, F. (2011). Estilos de aprendizaje, género y rendimiento académico. Revista de Estilos de Aprendizaje, 4(8), 71-84. https://doi.org/10.55777/rea.v4i8.937
Alhadabi, A. y Karpinski, A. C. (2020). Grit, self-efficacy, achievement orientation goals, and academic performance in University students. International Journal of Adolescence and Youth, 25(1), 519-535. https://doi.org/10.1080/02673843.2019.1679202
Álvarez Blanco, J., Lau Fernández, R., Pérez Lovelle, S. y Leyva Pérez, E. C. (2016). Predicción de resultados académicos de estudiantes de informática mediante el uso de redes neuronales. Ingeniare. Revista chilena de ingeniería, 24(4), 715-727. https://doi.org/10.4067/S0718-33052016000400015
Beer, M., Urenda, J., Kosheleva, O. y Kreinovich, V. (2020). Why spiking neural networks are efficient: A theorem. En M.-J. Lesot, S. Vieira, M. Z. Reformat, J. P. Carvalho, A. Wilbik, B. Bouchon-Meunier, y R. R. Yager (Eds.), Information processing and management of uncertainty in knowledge-based systems (pp. 59-69). Springer. https://doi.org/10.1007/978-3-030-50146-4_5
Busebaia, T. J. A. y John, B. (2020). Can flipped classroom enhance class engagement and academic performance among undergraduate pediatric nursing students? A mixed-methods study. Research and Practice in Technology Enhanced Learning, 15, 1-16. https://doi.org/10.1186/s41039-020-0124-1
Caianiello, E. R. (Ed.). (1968). Neural Networks. Springer-Verlag. https://doi.org/10.1007/978-3-642-87596-0
Cerda, G., Pérez, C., Elipe, P., Casas, J. A. y del Rey, R. (2019). Convivencia escolar y su relación con el rendimiento académico en alumnado de Educación Primaria. Revista de Psicodidáctica, 24(1), 46-52. https://doi.org/10.1016/j.psicod.2018.05.001
Çetinkaya, A. y Baykan, Ö. K. (2020). Prediction of middle school students’ programming talent using artificial neural networks. Engineering Science and Technology, an International Journal, 23(6), 1301-1307. https://doi.org/10.1016/j.jestch.2020.07.005
Cohen, J., Cohen, P., West, S. G. y Aiken, L. S. (2013). Applied multiple regression/correlation analysis for the behavioral sciences. Routledge.
Criollo, M., Romero, M. y Fontaines-Ruiz, T. (2017). Autoeficacia para el aprendizaje de la investigación en estudiantes universitarios. Psicología Educativa, 23(1), 63-72. https://doi.org/10.1016/j.pse.2016.09.002
Cukurova, M., Kent, C. y Luckin, R. (2019). Artificial intelligence and multimodal data in the service of human decision-making: A case study in debate tutoring. British Journal of Educational Technology, 50(6), 3032-3046. https://doi.org/10.1111/bjet.12829
Cukurova, M., Luckin, R. y Clark-Wilson, A. (2019). Creating the golden triangle of evidence-informed education technology with EDUCATE. British Journal of Educational Technology, 50(2), 490-504. Scopus. https://doi.org/10.1111/bjet.12727
Cukurova, M., Luckin, R. y Kent, C. (2020). Impact of an Artificial Intelligence Research Frame on the Perceived Credibility of Educational Research Evidence. International Journal of Artificial Intelligence in Education, 30(2), 205-235. https://doi.org/10.1007/s40593-019-00188-w
Dreyfus, G. (2005). Neural networks. Methodology and applications. Springer. https://doi.org/10.1007/3-540-28847-3
Eckmiller, R. y Malsburg, C. v d (Eds.). (1989). Neural computers. Springer-Verlag. https://doi.org/10.1007/978-3-642-83740-1
Edel Navarro, R. (2003a). El rendimiento académico: Concepto, investigación y desarrollo. Revista Iberoamericana sobre Calidad, Eficacia y Cambio en Educación, 1(2), 1-16. https://www.redalyc.org/articulo.oa?id=55110208
Edel Navarro, R. (2003b). Factores asociados al rendimiento académico. Revista Iberoamericana de Educación, 33(1), 1-20. https://doi.org/10.35362/rie3312872
Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning, 7(2), 195-225. https://doi.org/10.1007/BF00114844
Garbanzo Vargas, G. M. (2007). Factores asociados al rendimiento académico en estudiantes universitarios, una reflexión desde la calidad de la educación superior pública. Revista Educación, 31(1), 43-63. https://doi.org/10.15517/revedu.v31i1.1252
González-García, N., Sánchez-García, A. B., Nieto-Librero, A. B. y Galindo-Villardón, M. P. (2019). Actitud y enfoques de aprendizaje en el estudio de la didáctica general. Una visión multivariante. Revista de Psicodidáctica, 24(2), 154-162. https://doi.org/10.1016/j.psicod.2019.02.002
Guzmán-Zamora, N. y Gutiérrez-García, R. A. (2020). School motivation: Academic goals, attributional styles and academic performance in middle education students. Archivos Venezolanos de Farmacologia y Terapeutica, 39(3), 290-295. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088405992&partnerID=40&md5=da9d70fe3fb01c7e3f5922f24a13fba7
Hagan, M. T. y Menhaj, M. B. (1994). Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5(6), 989-993. https://doi.org/10.1109/72.329697
Hernández, R. M. (2018). La estrategia didáctica frente a los estilos de aprendizaje en la educación superior. Educación Médica, 19(Suppl. 2), 227. https://doi.org/10.1016/j.edumed.2017.10.034
Jones, M. H. (2004). Information driven optimization search filter: Predicting tabu egions. En M. H. Jones, B. E. Tawney y S. D. Patek (Eds.), Proceedings of the 2004 IEEE Systems and Information Engineering Design Symposium (pp. 41-47). University of Virginia. http://ieeexplore.ieee.org/servlet/opac?punumber=9192
Kaviani, S. y Sohn, I. (2020). Influence of random topology in artificial neural networks: A survey. ICT Express, 6(2), 145-150. https://doi.org/10.1016/j.icte.2020.01.002
Leal-López, E., Sánchez-Queija, I., Rivera, F. y Moreno, C. (2021). Tendencias en el consumo de alcohol en adolescentes escolarizados en España (2010-2018). Gaceta Sanitaria, 35(1), 35-41. https://doi.org/10.1016/j.gaceta.2019.07.011
Lobo, J. L., Laña, I., del Ser, J., Bilbao, M. N. y Kasabov, N. (2018). Evolving Spiking Neural Networks for online learning over drifting data streams. Neural Networks, 108, 1-19. https://doi.org/10.1016/j.neunet.2018.07.014
Luckin, R. y Cukurova, M. (2019). Designing educational technologies in the age of AI: A learning sciences-driven approach. British Journal of Educational Technology, 50(6), 2824-2838. https://doi.org/10.1111/bjet.12861
Mansilla Sepúlveda, J. y Beltrán Véliz, J. B. (2013). Coherencia entre las estrategias didácticas y las creencias curriculares de los docentes de segundo ciclo, a partir de las actividades didácticas. Perfiles Educativos, 35(139), 25-39. https://doi.org/10.1016/S0185-2698(13)71807-5
Marín Mayor, M., Arias Horcajadas, F., López Trabada, J. R. y Rubio Valladolid, G. (2019). Trastornos por consumo de alcohol. Enfermedades psiquiátricas (II)Trastornos de la personalidad. Trastornos por uso de sustancias, 12(85), 4993-5003. https://doi.org/10.1016/j.med.2019.09.004
Martín-Montañez, E., Barón-López, F. J., Rubio Lamia, L. O., Pavía Molina, J., Miranda Páez, J. y Santos Amaya, I. M. (2011). Consumo de alcohol, tabaco, cannabis y otras sustancias psicoactivas en estudiantes de la Universidad de Málaga. Trastornos Adictivos, 13(4), 160-166. https://doi.org/10.1016/S1575-0973(11)70032-0
MathWorks. (s. f.). ¿Qué es una red neuronal? Tres cosas que es necesario saber. https://es.mathworks.com/discovery/neural-network.html
Maxwell, S. E., Delaney, H. D. y Kelley, K. (2017). Designing Experiments and Analyzing Data: A Model Comparison Perspective (3.a ed.). Routledge. https://doi.org/10.4324/9781315642956
Møller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6(4), 525-533. https://doi.org/10.1016/S0893-6080(05)80056-5
Murillo, F. J. y Hernández-Castilla, R. (2020). ¿La implicación de las familias influye en el rendimiento? Un estudio en educación primaria en América Latina. Revista de Psicodidáctica, 25(1), 13-22. https://doi.org/10.1016/j.psicod.2019.10.002
Olascoaga, A. C. (2020). Curso de docencia para residentes: Evaluación de un programa. Educación Médica, 21(3), 187-192. https://doi.org/10.1016/j.edumed.2018.07.010
Pardo-Cueva, M., Chamba-Rueda, L. M., Gómez, Á. H. y Jaramillo-Campoverde, B. G. (2020). Ict and academic performance in higher education: A relationship enhanced by the use of the padlet. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, 2020(E28), 934-944. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081007798&partnerID=40&md5=110df3aaf4db20c75bff3c423bd52323
Pinto, P. M., Fernández, Y. O. y Cabezas, N. G. (2020). Intercultural education in the process of educational humanization of college students: Influences on academic achievement. Interciencia, 45(4), 201-208. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085116052&partnerID=40&md5=d5452e892f20e1b42dfe7f487dd4ba51
Piotrowski, A. P., Napiorkowski, J. J. y Piotrowska, A. E. (2020). Impact of deep learning-based dropout on shallow neural networks applied to stream temperature modelling. Earth-Science Reviews, 201, 1-24. https://doi.org/10.1016/j.earscirev.2019.103076
Plasencia Vilchis, M. L., Eguiluz Romo, L. de L., y Osorio Guzmán, M. (2016). Relación entre la dinámica familiar y las fortalezas humanas. Journal of Behavior, Health & Social Issues, 8(2), 1-8. https://www.sciencedirect.com/science/article/pii/S200707801730010X#:~:text=Los%20resultados%20se%C3%B1alan%20que%20las,el%20conocimiento%2C%20optimismo%2Fesperanza%2C
Poznyak, A., Sanchez, E. N. y Yu, W. (2001). Differential neural networks for robust nonlinear contro. Identification, state estimation and trajectory trackingl. World Scientific. https://doi.org/10.1142/4703
Salanova, M., Cifre, E., Grau, R. M., Llorens, S. y Martínez, I. M. (2005). Antecedentes de la autoeficacia en profesores y estudiantes universitarios: Un modelo causal. Revista de Psicología del Trabajo y de las Organizaciones, 21(1-2), 159-176. https://www.redalyc.org/pdf/2313/231317039010.pdf
Sarle, W. S. (1994). Neural networks and statistical models. Actas de la Nineteenth Annual SAS Users Group International Conference. https://people.orie.cornell.edu/davidr/or474/nn_sas.pdf
Serrano, W. (2020). The random neural network in price predictions. En I. Maglogiannis, L. Iliadis y E. Pimenidis (Eds.), Artificial intelligence applications and innovations (pp. 303-314). Springer. https://doi.org/10.1007/978-3-030-49161-1_26
Suardiaz-Muro, M., Morante-Ruiz, M., Ortega-Moreno, M., Ruiz, M. A., Martín-Plasencia, P. y Vela-Bueno, A. (2020). Sueño y rendimiento académico en estudiantes universitarios: Revisión sistemática. Revista de neurologia, 71(2), 43-53. Scopus. https://doi.org/10.33588/rn.7102.2020015
Torres Velázquez, L. E., y Rodríguez Soriano, N. Y. (2006). Rendimiento académico y contexto familiar en estudiantes universitarios. Enseñanza e Investigación en Psicología, 11(2), 255-270. https://www.redalyc.org/articulo.oa?id=29211204
Urrutia-Aguilar, M. E. y Guevara-Guzmán, R. (2013). Estrategias docentes en el primer año de la carrera de Médico Cirujano y nivel de aprovechamiento académico. Investigación en Educación Médica, 2(6), 77-81. https://doi.org/10.1016/S2007-5057(13)72690-5
Van Essen, D. C., y Glasser, M. F. (2018). Parcellating cerebral cortex: How invasive animal studies inform noninvasive mapmaking in humans. Neuron, 99(4), 640-663. https://doi.org/10.1016/j.neuron.2018.07.002
Downloads
Published
How to Cite
Issue
Section
License
1. In case the submitted paper is accepted for publication, the author(s) FREELY, COSTLESS, EXCLUSIVELY AND FOR AN INDEFINITE TERM transfer copyrights and patrimonial rights to Universidad Nacional (UNA, Costa Rica). For more details check the Originality Statement and Copyright Transfer Agreement
2. REUTILIZATION RIGHTS: UNA authorizes authors to use, for any purpose (among them selfarchiving or autoarchiving) and to publish in the Internet in any electronic site, the paper´'s final version, both approved and published (post print), as long as it is done with a non commercial purpose, does not generate derivates without previous consentment and recognizes both publisher's name and authorship.
3. The submission and possible publication of the paper in the Educare Electronic Journal is ruled by the Journal’s editorial policies, the institutional rules of Universidad Nacional and the laws of the Republic of Costa Rica. Additionally, any possible difference of opinion or future dispute shall be settled in accordance with the mechanisms of Alternative Dispute Resolution and the Costa Rican Jurisdiction.
4. In all cases, it is understood that the opinions issued are those of the authors and do not necessarily reflect the position and opinion of Educare, CIDE or Universidad Nacional, Costa Rica. It is also understood that, in the exercise of academic freedom, the authors have carried out a rogorous scientific-academic process of research, reflection and argumentation thar lays within the thematic scope of interest of the Journal.
5. The papers published by Educare Electronic Journal use a Creative Commons License: