Contribution of Remote Laboratories to Scientific Literacy: A Case Study
DOI:
https://doi.org/10.15359/ree.27-2.15806Keywords:
Science education, Instructional materials, School laboratories, Educational technology, experimentsAbstract
Aim. The aim is to evaluate whether the use of remote laboratories as didactic material improves knowledge, skills, and attitudes and develops the level of scientific literacy of telesecundaria [distance education programs for secondary school] students. Method. This study applies a mixed, quasi-experimental pretest/post-test methodology. The participants are all second-grade high school students (n=21) and their corresponding science teacher (Physics). Data were collected with questionnaires and by gathering learning evidence. The data analysis implemented a t-test for independent samples of the differences in the post-test/ pre-test score between the students that used the remote laboratories and the students from the control group; the analysis also triangulated quantitative and qualitative data. Results. The results and main findings show that remote laboratories help students develop scientific literacy. Furthermore, the group that used the remote laboratories showed an improvement of two points on average in the post-test results compared to the pre-test, while in the case of the control group, there was no such improvement. Conclusions. The conclusions reached are that the ease of use and relevance of electronic laboratories in science education favor the selection of inquiry activities and experimental evidence of learning through physical interaction with natural phenomena. Recommendations. Although electronic laboratories do not replace a formal laboratory, the use of this technology aids in the creation of an easy-to-use school laboratory. Its integration is particularly important in school contexts with scarce resources.
References
Braun, M., Kirkup, L., & Chadwick, S. (2018). The impact of inquiry orientation and other elements of cultural framework on student engagement in first year laboratory programs. International Journal of Innovation in Science and Mathematics Education, 26(4), 30-48. https://openjournals.library.sydney.edu.au/index.php/CAL/article/view/12508
Broitman, C. (2000). Cambian los problemas, cambian los procedimientos de resolución. En La enseñanza de las Matemáticas I. Programa y materiales de apoyo para el estudio. Licenciatura en educación secundaria. Especialidad: Telesecundaria. 3er semestre. Programa para la transformación y el fortalecimiento académicos de las Escuelas Normales (pp. 37-46). SEP.
Chacón-Ramírez, N., Saborío-García, F., & Nova-Bustos, N. (2016). El uso de recursos didácticos de la química para estudiantes, en los colegios académicos diurnos de los circuitos 09 y 11, San José, Costa Rica. Revista Electrónica Educare, 20(3), 1-24. https://doi.org/10.15359/ree.20-3.2
Conejo-Villalobos, M., Arguedas-Matarrita, C., & Concari, S. B. (2019). Difundiendo el uso de laboratorios remotos para la enseñanza de la física: Talleres con docentes y estudiantes. Revista de Enseñanza de La Física, 31(Extra), 205-213. www.revistas.unc.edu.ar/index.php/revistaEF/
Cifaldi, B. (2018). Impact of a Steam lab on science achievement and attitudes for girls [Tesis doctoral, University of South Carolina]. https://scholarcommons.sc.edu/etd/4927/
Clemes Cardoso, D., Passos Cristgiano, M., & Orlandi Arent, C. (2009). Development of new didactic materials for teaching science and biology: The importance of the new eeducation practices. OnLine Journal of Biological Sciences, 9(1), 1-5. https://doi.org/10.3844/ojbsci.2009.1.5
Fernández Sesma, M. G. & León Fontes, G. F. (2016). Principles for the use, adaptation, and development of didactic material. Mextesol Journal, 40(3), 1-10. http://www.mextesol.net/journal/index.php?page=journal&id_article=1491
Furió Más, C. J. & Furió, C. (2009). ¿Cómo diseñar una secuencia de enseñanza de ciencias con una orientación socioconstructivista? Educación Química, 20(1), 246–251. https://doi.org/10.1016/s0187-893x(18)30059-4
Hammang, C., Gough, P., Liu, W., Jiang, E., Ross, P., Cook, J., & Poronnik, P. (2018). Life sciences in virtual reality: First-year students learning as creators. En SIGGRAPH Asia 2018 Posters (pp. 1-2). https://doi.org/10.1145/3283289.3283328
Hapsari, A. S., Hanif, M., & Gunarhadi, R. (2019). Motion graphic animation videos to improve the learning outcomes of elementary school students. European Journal of Educational Research, 8(4), 1245-1255. https://doi.org/10.12973/eu-jer.8.4.1245
Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2010). Metodología de la investigación (5.a ed.). McGraw Hill.
Herrero-Villareal, D., Arguedas-Matarrita, C., & Gutiérrez-Soto, E. (2020). Laboratorios remotos: Recursos educativos para la experimentación a distancia en tiempos de pandemia desde la percepción de estudiantes. Revista de La Enseñanza de La Física, 32(extra), 181-189. https://revistas.unc.edu.ar/index.php/revistaEF/issue/view/2204
Husseini, N. S. & Kaszubski, I. (2017, 24 de Junio). Incorporating the Raspberry Pi into laboratory experiments in an introductory MATLAB course. Ponencia presentada en ASEE Annual Conference & Exposition. https://doi.org/10.18260/1-2--28514
Jiang, R., Li, C., Huang, X., Sung, S., & Xie, C. (2021). Remote Labs 2.0 to the rescue. Doing science in a pandemic. The Science Teacjer, 88(6), 63-73. https://www.nsta.org/science-teacher/science-teacher-julyaugust-2021-0/remote-labs-20-rescue
Laherto, A. & Laherto, J. (2018). Video-mediated physics instruction from preservice teachers to elementary students: Experiences and reflections. Journal of Digital Learning in Teacher Education, 34(2), 103-114. https://doi.org/10.1080/21532974.2017.1416712
Lee, B., Hanley, J. P., Nowak, S., Bates, J. H. T., & Hébert-Dufresne, L. (2020). Modeling the impact of school reopening on SARS-CoV-2 transmission using contact structure data from Shanghai. BMC Public Health, 20(1), 1-9. https://doi.org/10.1186/s12889-020-09799-8
Limpraptono, F. Y., Nurcahyo, E., & Faisol, M. (2021). The development of electronics telecommunication remote laboratory architecture based on mobile devices. International journal of online and biomedical engineering, 17(3), 26-36. https://doi.org/10.3991/ijoe.v17i03.20179
Lin, Y.-W. & Wang, T.-I. (2017). The design of a STEM-oriented project-based course for the higher grades of elementary schools. En T.-C., Huang, R. Lau, Y.-M. Huang, M. Spaniol, & C.-H.- Yuen (Eds.), Emerging Technologies for Education. SETE 2017. Lecture Notes in Computer Science (Vol. 10676, pp. 137-143). Springer. https://doi.org/10.1007/978-3-319-71084-6_15
Lustig, F., Brom, P., Kuriscak, P., & Dvorak, J. (2018). “Hands-on-Remote” Laboratories. En M. E. Auer & R. Langmann (Eds.), Smart Industry & Smart Education. REV 2018. Lecture Notes in Networks and Systems (Vol. 47, pp. 118-127). Springer. https://doi.org/10.1007/978-3-319-95678-7_13
Nasrudin, D., Irwansyah, F. S., Sugilar, H., Ramdhani, M. A., & Aulawi, H. (2019). Packaging science and local wisdom in digital devices for primary school students: Challenges and obstacles. Journal of Physics: Conference Series, 1318(1), 1-8. https://doi.org/10.1088/1742-6596/1318/1/012033
Organisation for Economic Co-operation and Developmen (OECD). (2019). PISA 2018 Assessment and analytical framework. https://doi.org/10.1787/b25efab8-en
Petry, C. A., Pacheco, F. S., Lohmann, D., Correa, G. A., & Moura, P. (2016). Project teaching beyond Physics: Integrating Arduino to the laboratory. Proceedings of 2016 Technologies Applied to Electronics Teaching, (TAEE). https://www.researchgate.net/publication/305908350_Project_teaching_beyond_Physics_Integrating_Arduino_to_the_laboratory
Polishuk, A. & Verner, I. (2018). An elementary science class with a robot teacher. En W. Lepuschitz, M. Merdan, G. Koppensteiner, R. Balogh, & D. Obdržálek (Eds.), Robotics in Education. Latest results and developments. RiE 2017. Advances in Intelligent Systems and Computing (Vol. 630, pp. 263-273). Springer. https://doi.org/10.1007/978-3-319-62875-2_24
Post, L. S., Guo, P., Saab, N., & Admiraal, W. (2019). Effects of remote labs on cognitive, behavioral, and affective learning outcomes in higher education. Computers & Education, 140, Artículo 103596. https://doi.org/10.1016/j.compedu.2019.103596
Qistina, M., Hermita, N., Alpusari, M., Noviana, E., Antosa, Z., Witri, G., Munjiatun, M., & Indarni, A. (2019). Improving science learning outcomes of elementary students by using interactive multimedia on human order materials. Journal of Physics: Conference Series, 1351, 1-6. https://doi.org/10.1088/1742-6596/1351/1/012075
Rocha Daros, M., Cardoso de Lima, J. P., Rochadel, W., Bento Silva, J., & Schardosim Simão, J. (2016). Remote experimentation in basic education using an architecture with Raspberry Pi. 3rd Experiment International Conference (75-78). IEEE. https://doi.org/10.1109/EXPAT.2015.7463218
Rosales Sánchez, E. M., Rodríguez Ortega, P. G., & Romero Ariza, M. (2020). Conocimiento, demanda cognitiva y contextos en la evaluación de la alfabetización científica en PISA. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 17(2), 1-22. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2020.v17.i2.2302
Schiefer, J., Golle, J., Tibus, M., Trautwein, U., & Oschatz, K. (2017). Elementary school children’s understanding of science: The implementation of an extracurricular science intervention. Contemporary Educational Psychology, 51, 447-463. https://doi.org/10.1016/j.cedpsych.2017.09.011
Secretaría de Educación Pública (SEP). (2017). Aprendizajes clave para la educación integral. Ciencias y tecnología. Educación secundaria. Plan y programas de estudio, orientaciones didácticas y sugerencias de evaluación. En Aprendizajes clave. https://www.planyprogramasdestudio.sep.gob.mx/descargables/biblioteca/secundaria/ciencias/1-LpM-sec-Ciencias-y-Tecnologia.pdf
Skutil, M., Havlíčková, K., & Matějíčková, R. (2013). Didactic material resources in the teaching of national history and geography: Selected results of a qualitative survey. International Journal of Educational and Pedagogical Sciences, 7(10), 2744-2748. https://publications.waset.org/vol/82
Suárez-Ramos, J. C. (2017). Importancia del uso de recursos didácticos en el proceso de enseñanza y aprendizaje de las ciencias biológicas para la estimulación visual del estudiantado. Revista Electronica Educare, 21(2), 1-18. https://doi.org/10.15359/ree.21-2.22
Syarah, E. S., Yetti, E., Fridani, L., Yufiarti, Y. y Hapidin, H., & Pupala, B. (2019). Electronic Comics in Elementary School Science Learning for Marine Conservation. Jurnal Pendidikan IPA Indonesia, 8(4), 500-511. https://doi.org/10.15294/jpii.v8i4.19377
Viner, R. M., Russell, S. J., Croker, H., Packer, J., Ward, J., Stansfield, C., Mytton, O., Bonell, C., & Booy, R. (2020). School closure and management practices during coronavirus outbreaks including COVID-19: A rapid systematic review. The Lancet Child and Adolescent Health, 4(5), 397-404. https://doi.org/10.1016/S2352-4642(20)30095-X
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
1. In case the submitted paper is accepted for publication, the author(s) FREELY, COSTLESS, EXCLUSIVELY AND FOR AN INDEFINITE TERM transfer copyrights and patrimonial rights to Universidad Nacional (UNA, Costa Rica). For more details check the Originality Statement and Copyright Transfer Agreement
2. REUTILIZATION RIGHTS: UNA authorizes authors to use, for any purpose (among them selfarchiving or autoarchiving) and to publish in the Internet in any electronic site, the paper´'s final version, both approved and published (post print), as long as it is done with a non commercial purpose, does not generate derivates without previous consentment and recognizes both publisher's name and authorship.
3. The submission and possible publication of the paper in the Educare Electronic Journal is ruled by the Journal’s editorial policies, the institutional rules of Universidad Nacional and the laws of the Republic of Costa Rica. Additionally, any possible difference of opinion or future dispute shall be settled in accordance with the mechanisms of Alternative Dispute Resolution and the Costa Rican Jurisdiction.
4. In all cases, it is understood that the opinions issued are those of the authors and do not necessarily reflect the position and opinion of Educare, CIDE or Universidad Nacional, Costa Rica. It is also understood that, in the exercise of academic freedom, the authors have carried out a rogorous scientific-academic process of research, reflection and argumentation thar lays within the thematic scope of interest of the Journal.
5. The papers published by Educare Electronic Journal use a Creative Commons License: