Artificial Intelligence in University Education: Bibliometric Review in Scopus and Web of Science

Authors

DOI:

https://doi.org/10.15359/ree.28-S.18489

Keywords:

scientific production, artificial intelligence, scientific publication, Scopus, Web of Science, AI, SDG 4, Quality education, education technology, SDG 9, Industry, innovation and infraestructure, innovation research

Abstract

Introduction. Artificial intelligence (AI) today plays an important role in university education; in that sense, the objective of this research is to analyze the scientific production on AI in university education under a bibliometric review in Scopus and Web of Science (WoS). Method. A bibliometric analysis was carried out, where 895 documents published in journals indexed in the Scopus and WoS databases were analyzed. The terms ‘artificial intelligence’, ‘computational intelligence’, ‘AI’, ‘university education’ and ‘university’ were applied as terms, and the Boolean operators AND and OR were used for both databases. Results. We found 848 documents in Scopus and 48 in WoS. China is the country with the highest scientific production. Brain-Broad Research in Artificial Intelligence, Neuroscience, and Education Science are the journals with the highest number of publications in WoS, while in Scopus they are Journal of Physics Conference and Advances in Intelligent Systems and Computing. Regarding the thematic area, it was found that the highest production corresponds to computer science. In terms of affiliation, the authors belong to institutions in China, and the article with the highest number of citations is “Neuropsychological Bases of Self-Improvement of Own Physical Health of Future Teachers in the Course of University Education”. Conclusions. It is necessary to continue research on AI and its implications in university education due to its relevance in the teaching-learning processes and the interdisciplinary innovation that provides tools to reinforce knowledge.

Author Biographies

Calixto Tapullima-Mori, Peruvian Union University

Licenciado en Psicología, maestrante, especialista en proyectos de investigación y asesoría de trabajos de investigación científica (Tesis), con ocho años de experiencia y diversos artículos científicos publicados en revistas indexadas. Investigador en Cnl Asesores, orientado a la salud mental y desarrollo de las habilidades investigativas.

Oscar Mamani-Benito, Universidad Señor de Sipán

Psicólogo egresado de la Universidad Peruana Unión. Actualmente realiza estudios acerca de la calidad y calidez de los procesos de investigación universitaria en el Perú.

Josué Edison Turpo-Chaparro, Peruvian Union University

Doctor en Educación. Magister en Educación. Licenciado en Educación. Licenciado en Teología. Director de Investigación Escuela de Posgrado. Director de revista de investigación Apuntes Universitarios. Especialista en Visibilidad de la producción científica. Especialista en Ciencias sociales y en metodología de la investigación científica. Análisis bibliométrico, cienciometría, bases de datos, alfabetización informacional, gestores de investigación, vigilancia tecnológica

Lincol Orlando Olivas-Ugarte, Cesar Vallejo University

Magister en psicología educativa y problemas de aprendizaje (UCV) y Especialista en Terapia cognitivo-Conductual (UNFV). He trabajado en Instituciones educativas atendiendo a niños, adolescentes y jóvenes. También he laborado en el ámbito organizacional realizando selección de personal. He sido profesor de los cursos de Metodología de la Investigación Científica y Filosofía en la Universidad Inca Garcilaso de la Vega. Actualmente soy docente de las asignaturas de Psicometría, Proyecto de investigación y Desarrollo de proyecto de investigación en la Universidad César Vallejo. También soy profesor del curso de Construcción de pruebas psicológicas en la Universidad Privada del Norte. Adicionalmente soy Asesor privado en Análisis de datos Estadísticos en SPSS y redacción científica a nivel de Pre y Postgrado. Por lo tanto, estoy seguro de que puedo desempeñarme con eficiencia en el puesto solicitado y aportar en el desarrollo de su prestigiosa institución.

Renzo Felipe Carranza-Esteban, Universidad San Ignacio de Loyola

Magíster en Investigación y docencia universitaria, Psicólogo de profesión. Especialización en Estadística aplicada a la investigación. Membership de la American Psychological Association (APA), Editor de la Revista Propósitos y Representaciones. Ponente internacional y escritor de diferentes artículos científicos y de divulgación en revistas indizadas. Experiencia profesional en investigación, búsqueda de información científica y diseño de instrumentos de medición. Actualmente es docente investigador de la Universidad San Ignacio de Loyola.

References

Abdullah, S. I. N. W., Arokiyasamy, K., Goh, S. L., Culas, A. J. & Manaf, N. M. A. (2022). University students’ satisfaction and future outlook towards forced remote learning during a global pandemic. Smart Learning Environments, 9(1), 1-21. https://slejournal.springeropen.com/articles/10.1186/s40561-022-00197-8

Al Darayseh, A. (2023). Acceptance of artificial intelligence in teaching science: Science teachers’ perspective. Computers and Education: Artificial Intelligence, 4, 1-9. https://www.sciencedirect.com/science/article/pii/S2666920X23000115/pdfft?md5=67cb10d3a7912e85bdff1feab33e20bd&pid=1-s2.0-S2666920X23000115-main.pdf

Al Ka’Bi, A. (2023). Proposed artificial intelligence algorithm and deep learning techniques for development of higher education. International Journal of Intelligent Networks, 4, 68-73. https://www.sciencedirect.com/science/article/pii/S2666603023000039/pdfft?md5=1678d22980e0262f62d8af184c4937a4&pid=1-s2.0-S2666603023000039-main.pdf

Al-Kumaim, N. H., Alhazmi, A. K., Mohammed, F., Gazem, N. A., Shabbir, M. S. & Fazea, Y. (2021). Exploring the impact of the COVID-19 pandemic on university students’ learning life: An integrated conceptual motivational model for sustainable and healthy online learning. Sustainability, 13(5), 1-20. https://www.mdpi.com/2071-1050/13/5/2546

Baas, J., Schotten, M., Plume, A., Côté, G. & Karimi, R. (2020). Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quantitative Science Studies, 1(1), 377-386. https://direct.mit.edu/qss/article-pdf/1/1/377/1760882/qss_a_00019.pdf

Broadbent, E., Feerst, D. A., Lee, S. H., Robinson, H., Albo-Canals, J., Ahn, H. S. & MacDonald, B. A. (2018). How could companion robots be useful in rural schools? International Journal of Social Robotics, 10(3), 295-307. https://link.springer.com/article/10.1007/s12369-017-0460-5

Cañedo Andalia, R., Rodríguez Labrada, R. & Montejo Castells, M. (2010). Scopus: La mayor base de datos de literatura científica arbitrada al alcance de los países subdesarrollados. Revista Cubana de Información en Ciencias de la Salud, 21(3), 270-282. https://www.redalyc.org/pdf/3776/377657496004.pdf

Chaparro-Martínez, E. I., Álvarez-Muñoz, P. & D’Armas-Regnault, M. (2016). Gestión de la información: Uso de las bases de datos Scopus y Web of Science con fines académicos. Universidad, Ciencia y Tecnología, 20(81), 166-175. https://www.researchgate.net/publication/312384415_Gestion_de_la_informacion_uso_de_las_bases_de_datos_Scopus_y_Web_of_Science_con_fines_academicos

*Chassignol, M., Khoroshavin, A., Klimova, A. & Bilyatdinova, A. (2018). Artificial intelligence trends in education: A narrative overview. Procedia Computer Science, 136, 16-24. https://www.sciencedirect.com/science/article/pii/S1877050918315382/pdf?md5=d465ed5739e3fe4920c1531acf44aa6d&pid=1-s2.0-S1877050918315382-main.pdf

Chaudhry, M. A. & Kazim, E. (2022). Artificial Intelligence in Education (AIEd): A high-level academic and industry note 2021. AI and Ethics, 2(1), 157-165. https://link.springer.com/article/10.1007/s43681-021-00074-z

*Chen, J., Ying, H., Liu, X., Gu, J., Feng, R., Chen, T., Gao, H. & Wu, J. (2021). A transfer learning based super-resolution microscopy for biopsy slice images: The joint methods perspective. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18(1), 103-113. https://ieeexplore.ieee.org/document/9082112

*Chen, L., Chen, P. & Lin, Z. (2020). Artificial Intelligence in Education: A Review. IEEE Access, 8, 75264-75278. https://ieeexplore.ieee.org/document/9069875

*Chen, X., Xie, H., Zou, D. & Hwang, G.-J. (2020). Application and theory gaps during the rise of artificial intelligence in education. Computers and Education: Artificial Intelligence, 1, 1-20. https://www.sciencedirect.com/science/article/pii/S2666920X20300023/pdfft?md5=9bfa6c630dfe862631a3cfd4046eafba&pid=1-s2.0-S2666920X20300023-main.pdf

Chiu, T. K. F., Meng, H., Chai, C.-S., King, I., Wong, S. & Yam, Y. (2022). Creation and evaluation of a pretertiary Artificial Intelligence (AI) curriculum. IEEE Transactions on Education, 65(1), 30-39. https://ieeexplore.ieee.org/document/9455898

Chiu, T. K. F., Xia, Q., Zhou, X., Chai, C. S. & Cheng, M. (2023). Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Computers and Education: Artificial Intelligence, 4, 1-15.https://www.sciencedirect.com/science/article/pii/S2666920X2200073X/pdfft?md5=930c2043fe88f4e565cb0b1e8c8aed32&pid=1-s2.0-S2666920X2200073X-main.pdf

Corona Martínez, L. A. & Fonseca Hernández, M. (2021). Acerca del carácter retrospectivo o prospectivo en la investigación científica. MediSur, 19(2), 338-341. https://www.redalyc.org/journal/1800/180068639021/html/

de la Vega Hernández, I. M., Serrano Urdaneta, A. & Carayannis, E. (2023). Global bibliometric mapping of the frontier of knowledge in the field of artificial intelligence for the period 1990-2019. Artificial Intelligence Review, 56(2), 1699-1729. https://link.springer.com/article/10.1007/s10462-022-10206-4

Dindorf, C., Bartaguiz, E., Gassmann, F. & Fröhlich, M. (2023). Conceptual Structure and Current Trends in Artificial Intelligence, Machine Learning, and Deep Learning Research in Sports: A Bibliometric Review. International Journal of Environmental Research and Public Health, 20(1), 1-23. https://www.mdpi.com/1660-4601/20/1/173

Freyne, J., Coyle, L., Smyth, B. & Cunningham, P. (2010). Relative status of journal and conference publications in computer science. Communications of the ACM, 53(11), 124-132. https://dl.acm.org/doi/pdf/10.1145/1839676.1839701

Gašević, D., Siemens, G. & Sadiq, S. (2023). Empowering learners for the age of artificial intelligence. Computers and Education: Artificial Intelligence, 4, 1-4. https://www.sciencedirect.com/science/article/pii/S2666920X23000097/pdfft?md5=b9783cb7ece9ecf8e0b647617e69d3a2&pid=1-s2.0-S2666920X23000097-main.pdf

Hébert, C., Jenson, J. & Terzopoulos, T. (2021). “Access to technology is the major challenge”: Teacher perspectives on barriers to DGBL in K-12 classrooms. E-Learning and Digital Media, 18(3), 307-324. https://journals.sagepub.com/doi/pdf/10.1177/2042753021995315

Hwang, G. J. & Chang, H.-F. (2011). A formative assessment-based mobile learning approach to improving the learning attitudes and achievements of students. Computers & Education, 56(4), 1023-1031. https://www.sciencedirect.com/science/article/abs/pii/S0360131510003519?via%3Dihub

Hwang, G.-J., Tsai, C.-C. & Yang, S. J. H. (2008). Criteria, strategies and research issues of context-aware ubiquitous learning. Educational Technology and Society, 11(2), 81-91. https://www.jstor.org/stable/jeductechsoci.11.2.81

*Hwang, G.-J., Xie, H., Wah, B. W. & Gašević, D. (2020). Vision, challenges, roles and research issues of Artificial Intelligence in Education. Computers and Education: Artificial Intelligence, 1, 1-5. https://www.sciencedirect.com/science/article/pii/S2666920X20300011/pdfft?md5=df01a54af789cfe971a00beb564bb6ae&pid=1-s2.0-S2666920X20300011-main.pdf

Jia, K., Wang, P., Li, Y., Chen, Z., Jiang, X., Lin, C.-L. & Chin, T. (2022). Research landscape of artificial intelligence and e-learning: A bibliometric research. Frontiers in Psychology, 13, 1-14. https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2022.795039/full

Jin, L. (2019). Investigation on potential application of artificial intelligence in preschool children’s education. Journal of Physics: Conference Series, 1288(1), 1-6. https://iopscience.iop.org/article/10.1088/1742-6596/1288/1/012072/pdf

Kaushik, R., Parmar, M. & Jhamb, S. (2021). Roles and Research Trends of Artificial Intelligence in Mathematics Education. 2021 2nd International Conference on Computational Methods in Science & Technology (ICCMST), 202-205. https://ieeexplore.ieee.org/document/9784630

Kewalramani, S., Kidman, G. & Palaiologou, I. (2021). Using artificial intelligence (AI)-interfaced robotic toys in early childhood settings: A case for children’s inquiry literacy. European Early Childhood Education Research Journal, 29(5), 652-668. https://www.tandfonline.com/doi/full/10.1080/1350293X.2021.1968458?scroll=top&needAccess=true

Khosravi, H., Shum, S. B., Chen, G., Conati, C., Tsai, Y.-S., Kay, J., Knight, S., Martínez-Maldonado, R., Sadiq, S. & Gašević, D. (2022). Explainable Artificial Intelligence in education. Computers and Education: Artificial Intelligence, 3, 1-22. https://www.sciencedirect.com/science/article/pii/S2666920X22000297/pdfft?md5=26f79fe5fc9f314f279846cdfa6bd1af&pid=1-s2.0-S2666920X22000297-main.pdf

Kim, N. J. & Kim, M. K. (2022). Teacher’s perceptions of using an artificial intelligence-based educational tool for scientific writing. Frontiers in Education, 7, 1-13. https://www.frontiersin.org/journals/education/articles/10.3389/feduc.2022.755914/full

*Kosholap, A., Maksymchuk, B., Branitska, T., Martynets, L., Boichenko, A., Stoliarenko, O., Matsuk, L., Surovov, O., Stoliarenko, O. & Maksymchuk, I. (2021). Neuropsychological bases of self-improvement of own physical health of future teachers in the course of university education. BRAIN. Broad Research in Artificial Intelligence and Neuroscience, 12(3), 171-190. https://lumenpublishing.com/journals/index.php/brain/article/view/4117/3211

Laupichler, M. C., Aster, A., Schirch, J. & Raupach, T. (2022). Artificial intelligence literacy in higher and adult education: A scoping literature review. Computers and Education: Artificial Intelligence, 3, 1-15. https://www.sciencedirect.com/science/article/pii/S2666920X2200056X/pdfft?md5=8e0d1ffe078727e0870356bf5c27083f&pid=1-s2.0-S2666920X2200056X-main.pdf

Lin, Y. & Yu, Z. (2024). A bibliometric analysis of artificial intelligence chatbots in educational contexts. Interactive Technology and Smart Education, 21(2), 189-213. https://www.emerald.com/insight/content/doi/10.1108/itse-12-2022-0165/full/html

Luckin, R., Cukurova, M., Kent, C. & du Boulay, B. (2022). Empowering educators to be AI-ready. Computers and Education: Artificial Intelligence, 3, 1-11. https://www.sciencedirect.com/science/article/pii/S2666920X22000315/pdfft?md5=e714befa115b570081b2d7fb79051e3c&pid=1-s2.0-S2666920X22000315-main.pdf

Meyer, B., Choppy, C., Staunstrup, J. & van Leeuwen, J. (2009). Viewpoint research evaluation for computer science. Communications of the ACM, 52(4), 31-34. https://dl.acm.org/doi/pdf/10.1145/1498765.1498780

*Morales-Rodríguez, F. M., Martínez-Ramón, J. P., Méndez, I. & Ruiz-Esteban, C. (2021). Stress, coping, and resilience before and after COVID-19: A predictive model based on artificial intelligence in the university environment. Frontiers in Psychology, 12, 1-15. https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2021.647964/full

Moreno-Guerrero, A.-J., López-Belmonte, J., Marín-Marín, J.-A. & Soler-Costa, R. (2020). Scientific development of educational artificial intelligence in Web of Science. Future Internet, 12(8), 1-17. https://www.mdpi.com/1999-5903/12/8/124

Nguyen, A., Ngo, H. N., Hong, Y., Dang, B. & Nguyen, B.-P. T. (2023). Ethical principles for artificial intelligence in education. Education and Information Technologies, 28(4), 4221-4241. https://link.springer.com/article/10.1007/s10639-022-11316-w

Ouyang, F. & Jiao, P. (2021). Artificial intelligence in education: The three paradigms. Computers and Education: Artificial Intelligence, 2, 1-6. https://www.sciencedirect.com/science/article/pii/S2666920X2100014X/pdfft?md5=34e8abc4fce32807ec75f01375aebb23&pid=1-s2.0-S2666920X2100014X-main.pdf

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews, 10(1), 1-11. https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-021-01626-4

*Pokrivcakova, S. (2019). Preparing teachers for the application of AI-powered technologies in foreign language education. Journal of Language and Cultural Education, 7(3), 135-153. https://sciendo.com/article/10.2478/jolace-2019-0025

Prahani, B. K., Rizki, I. A., Jatmiko, B., Suprapto, N. & Tan, A. (2022). Artificial intelligence in education research during the last ten years: A review and bibliometric study. International Journal of Emerging Technologies in Learning (iJET), 17(08), 169-188. https://online-journals.org/index.php/i-jet/article/view/29833/11205

Pu, S., Ahmad, N. A., Khambari, M. N. M., & Yap, N. K. (2021). Identification and analysis of core topics in educational artificial intelligence research: A bibliometric analysis. Cypriot Journal of Educational Sciences, 16(3), 995-1009. https://un-pub.eu/ojs/index.php/cjes/article/view/5782

Schiff, D. (2021). Out of the laboratory and into the classroom: The future of artificial intelligence in education. Al & Society, 36(1), 331-348. https://link.springer.com/article/10.1007/s00146-020-01033-8

Sebaa, A. S., Yousfi, M. & Melouki, O. (2018). AI application at the international level: United Arab Emirates as a model. Journal of AI Mayadine AO Iktissaddia, 1(1), 31-43.

Somasundaram, M., Latha, P. & Pandian, S. A. S. (2020). Curriculum design using artificial intelligence (AI) back propagation method. Procedia Computer Science, 172, 134-138. https://www.sciencedirect.com/science/article/pii/S1877050920313430/pdf?md5=d3a7d308bdd49104572226682efb3f8f&pid=1-s2.0-S1877050920313430-main.pdf

Tang, K.-Y., Chang, C.-Y. & Hwang, G.-J. (2023). Trends in artificial intelligence-supported e-learning: A systematic review and co-citation network analysis (1998–2019). Interactive Learning Environments, 31(4), 2134-2152. https://www.tandfonline.com/doi/full/10.1080/10494820.2021.1875001?scroll=top&needAccess=true

Tenório, K., Olari, V., Chikobava, M. & Romeike, R. (2023). Artificial intelligence literacy research field: A bibliometric analysis from 1989 to 2021. Proceedings of the 54th ACM Technical Symposium on Computer Science Education, 1, 1083-1089. https://dl.acm.org/doi/10.1145/3545945.3569874

Thayyib, P. V., Mamilla, R., Khan, M., Fatima, H., Asim, M., Anwar, I., Shamsudheen, M. K. & Khan, M. A. (2023). State-of-the-art of artificial intelligence and big data analytics reviews in five different domains: A bibliometric summary. Sustainability, 15(5), 1-38. https://www.mdpi.com/2071-1050/15/5/4026

Udupa, P. (2022). Application of artificial intelligence for university information system. Engineering Applications of Artificial Intelligence, 114, 1-3. https://www.sciencedirect.com/science/article/abs/pii/S0952197622002081?via%3Dihub

Yang, W. (2022). Artificial intelligence education for young children: Why, what, and how in curriculum design and implementation. Computers and Education: Artificial Intelligence, 3, 1-7. https://www.sciencedirect.com/science/article/pii/S2666920X22000169/pdfft?md5=194f688fbde839993b9157b570edda00&pid=1-s2.0-S2666920X22000169-main.pdf

Yang, X. (2019). Accelerated move for AI education in China. ECNU Review of Education, 2(3), 347-352. https://journals.sagepub.com/doi/pdf/10.1177/2096531119878590

*Zawacki-Richter, O., Marín, V. I., Bond, M. & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – Where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 1-27. https://educationaltechnologyjournal.springeropen.com/articles/10.1186/s41239-019-0171-0

Zhang, K. & Aslan, A. B. (2021). AI technologies for education: Recent research & future directions. Computers and Education: Artificial Intelligence, 2, 1-11. https://www.sciencedirect.com/science/article/pii/S2666920X21000199/pdfft?md5=6f79cd1edcc954755ba3b4feec270613&pid=1-s2.0-S2666920X21000199-main.pdf

Published

2024-12-27

How to Cite

Artificial Intelligence in University Education: Bibliometric Review in Scopus and Web of Science (C. Tapullima-Mori, O. Mamani-Benito, J. E. Turpo-Chaparro, L. O. Olivas-Ugarte, & R. F. Carranza-Esteban , Trans.). (2024). Revista Electrónica Educare, 28(S), 1-21. https://doi.org/10.15359/ree.28-S.18489

How to Cite

Artificial Intelligence in University Education: Bibliometric Review in Scopus and Web of Science (C. Tapullima-Mori, O. Mamani-Benito, J. E. Turpo-Chaparro, L. O. Olivas-Ugarte, & R. F. Carranza-Esteban , Trans.). (2024). Revista Electrónica Educare, 28(S), 1-21. https://doi.org/10.15359/ree.28-S.18489

Comentarios (ver términos de uso)