Contribuição de laboratórios remotos para a alfabetização científica: Um estudo de caso

Autores

DOI:

https://doi.org/10.15359/ree.27-2.15806

Palavras-chave:

Educação Científica, Material didático, Laboratórios escolares, Tecnologia Educacional, experiências

Resumo

Objetivo. O objetivo é avaliar se o uso de laboratórios remotos como material didático melhora os conhecimentos, habilidades e atitudes, desenvolvendo o nível de alfabetização científica dos alunos da telesecundária. Metodologia. La metodologia é mista, quase experimental pré teste/pós-teste. Os participantes são todos os alunos do segundo ano (n=21) e o professor do grupo correspondente à disciplina de ciências (física). Os dados foram coletados através de questionários e da coleta de evidências de aprendizagem. Para sua análise, foi realizado um teste t para amostras independentes das diferenças na pontuação do pós-teste/pré-teste entre os alunos que usaram os laboratórios remotos e os alunos pertencentes ao grupo controle, bem como triangulação de dados quantitativos e dados qualitativos. Resultados. Os resultados e principais constatações mostram que os laboratórios remotos ajudam a desenvolver a alfabetização científica do corpo discente. O grupo que utilizou os laboratórios remotos apresentou uma melhora média de dois pontos nos resultados do pós-teste em relação ao pré-teste; enquanto no caso do grupo controle não houve essa melhora. Conclusões. As conclusões a que se chega são de que a facilidade de uso e a relevância dos laboratórios eletrônicos no ensino de ciências favorecem a seleção de atividades investigativas e evidências experimentais de aprendizagem por meio da interação física com fenômenos naturais. Recomendações. Embora os laboratórios eletrônicos não substituam um laboratório formal, a utilização desta tecnologia permite criar um laboratório escolar de fácil utilização, sendo a sua integração particularmente importante em contextos escolares com recursos escassos.

Biografia do Autor

Ramón Zárate-Moedano, Benemérita Escuela Normal Veracruzana

Maestría en Educación Virtual por la Universidad Veracruzana. Profesor de la Benemérita Escuela Normal Veracruzana. Sus principales líneas de investigación son Política pública y evaluación educativa, Alfabetización científica y la enseñanza de las ciencias.

Sandra Luz Canchola-Magdaleno, Universidad Autónoma de Querétaro

Obtuvo su grado de Doctor en Tecnología Avanzada por el Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Unidad Querétaro del I.P.N. con línea terminal de Procesamiento de Imágenes. Es profesora investigadora de tiempo completo en la Facultad de Informática de la Universidad Autónoma de Querétaro. Encargada del Laboratorio de Cómputo Paralelo. Imparte clases en licenciatura y posgrado.

Jorge Suarez-Medellín, Universidad Veracruzana

Obtuvo su grado de Doctor en Ciencias en Alimentos. Es profesor en el Centro de Investigaciones Cerebrales de la Universidad Veracruzana imparte clases en licenciatura y posgrado. Sus principales líneas de investigación son bioprospección de metabolitos secundarios con potencial en el tratamiento de enfermedades neurodegenerativas y Alfabetización científica y comprensión pública de la ciencia.

Referências

Braun, M., Kirkup, L., & Chadwick, S. (2018). The impact of inquiry orientation and other elements of cultural framework on student engagement in first year laboratory programs. International Journal of Innovation in Science and Mathematics Education, 26(4), 30-48. https://openjournals.library.sydney.edu.au/index.php/CAL/article/view/12508

Broitman, C. (2000). Cambian los problemas, cambian los procedimientos de resolución. En La enseñanza de las Matemáticas I. Programa y materiales de apoyo para el estudio. Licenciatura en educación secundaria. Especialidad: Telesecundaria. 3er semestre. Programa para la transformación y el fortalecimiento académicos de las Escuelas Normales (pp. 37-46). SEP.

Chacón-Ramírez, N., Saborío-García, F., & Nova-Bustos, N. (2016). El uso de recursos didácticos de la química para estudiantes, en los colegios académicos diurnos de los circuitos 09 y 11, San José, Costa Rica. Revista Electrónica Educare, 20(3), 1-24. https://doi.org/10.15359/ree.20-3.2

Conejo-Villalobos, M., Arguedas-Matarrita, C., & Concari, S. B. (2019). Difundiendo el uso de laboratorios remotos para la enseñanza de la física: Talleres con docentes y estudiantes. Revista de Enseñanza de La Física, 31(Extra), 205-213. www.revistas.unc.edu.ar/index.php/revistaEF/

Cifaldi, B. (2018). Impact of a Steam lab on science achievement and attitudes for girls [Tesis doctoral, University of South Carolina]. https://scholarcommons.sc.edu/etd/4927/

Clemes Cardoso, D., Passos Cristgiano, M., & Orlandi Arent, C. (2009). Development of new didactic materials for teaching science and biology: The importance of the new eeducation practices. OnLine Journal of Biological Sciences, 9(1), 1-5. https://doi.org/10.3844/ojbsci.2009.1.5

Fernández Sesma, M. G. & León Fontes, G. F. (2016). Principles for the use, adaptation, and development of didactic material. Mextesol Journal, 40(3), 1-10. http://www.mextesol.net/journal/index.php?page=journal&id_article=1491

Furió Más, C. J. & Furió, C. (2009). ¿Cómo diseñar una secuencia de enseñanza de ciencias con una orientación socioconstructivista? Educación Química, 20(1), 246–251. https://doi.org/10.1016/s0187-893x(18)30059-4

Hammang, C., Gough, P., Liu, W., Jiang, E., Ross, P., Cook, J., & Poronnik, P. (2018). Life sciences in virtual reality: First-year students learning as creators. En SIGGRAPH Asia 2018 Posters (pp. 1-2). https://doi.org/10.1145/3283289.3283328

Hapsari, A. S., Hanif, M., & Gunarhadi, R. (2019). Motion graphic animation videos to improve the learning outcomes of elementary school students. European Journal of Educational Research, 8(4), 1245-1255. https://doi.org/10.12973/eu-jer.8.4.1245

Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2010). Metodología de la investigación (5.a ed.). McGraw Hill.

Herrero-Villareal, D., Arguedas-Matarrita, C., & Gutiérrez-Soto, E. (2020). Laboratorios remotos: Recursos educativos para la experimentación a distancia en tiempos de pandemia desde la percepción de estudiantes. Revista de La Enseñanza de La Física, 32(extra), 181-189. https://revistas.unc.edu.ar/index.php/revistaEF/issue/view/2204

Husseini, N. S. & Kaszubski, I. (2017, 24 de Junio). Incorporating the Raspberry Pi into laboratory experiments in an introductory MATLAB course. Ponencia presentada en ASEE Annual Conference & Exposition. https://doi.org/10.18260/1-2--28514

Jiang, R., Li, C., Huang, X., Sung, S., & Xie, C. (2021). Remote Labs 2.0 to the rescue. Doing science in a pandemic. The Science Teacjer, 88(6), 63-73. https://www.nsta.org/science-teacher/science-teacher-julyaugust-2021-0/remote-labs-20-rescue

Laherto, A. & Laherto, J. (2018). Video-mediated physics instruction from preservice teachers to elementary students: Experiences and reflections. Journal of Digital Learning in Teacher Education, 34(2), 103-114. https://doi.org/10.1080/21532974.2017.1416712

Lee, B., Hanley, J. P., Nowak, S., Bates, J. H. T., & Hébert-Dufresne, L. (2020). Modeling the impact of school reopening on SARS-CoV-2 transmission using contact structure data from Shanghai. BMC Public Health, 20(1), 1-9. https://doi.org/10.1186/s12889-020-09799-8

Limpraptono, F. Y., Nurcahyo, E., & Faisol, M. (2021). The development of electronics telecommunication remote laboratory architecture based on mobile devices. International journal of online and biomedical engineering, 17(3), 26-36. https://doi.org/10.3991/ijoe.v17i03.20179

Lin, Y.-W. & Wang, T.-I. (2017). The design of a STEM-oriented project-based course for the higher grades of elementary schools. En T.-C., Huang, R. Lau, Y.-M. Huang, M. Spaniol, & C.-H.- Yuen (Eds.), Emerging Technologies for Education. SETE 2017. Lecture Notes in Computer Science (Vol. 10676, pp. 137-143). Springer. https://doi.org/10.1007/978-3-319-71084-6_15

Lustig, F., Brom, P., Kuriscak, P., & Dvorak, J. (2018). “Hands-on-Remote” Laboratories. En M. E. Auer & R. Langmann (Eds.), Smart Industry & Smart Education. REV 2018. Lecture Notes in Networks and Systems (Vol. 47, pp. 118-127). Springer. https://doi.org/10.1007/978-3-319-95678-7_13

Nasrudin, D., Irwansyah, F. S., Sugilar, H., Ramdhani, M. A., & Aulawi, H. (2019). Packaging science and local wisdom in digital devices for primary school students: Challenges and obstacles. Journal of Physics: Conference Series, 1318(1), 1-8. https://doi.org/10.1088/1742-6596/1318/1/012033

Organisation for Economic Co-operation and Developmen (OECD). (2019). PISA 2018 Assessment and analytical framework. https://doi.org/10.1787/b25efab8-en

Petry, C. A., Pacheco, F. S., Lohmann, D., Correa, G. A., & Moura, P. (2016). Project teaching beyond Physics: Integrating Arduino to the laboratory. Proceedings of 2016 Technologies Applied to Electronics Teaching, (TAEE). https://www.researchgate.net/publication/305908350_Project_teaching_beyond_Physics_Integrating_Arduino_to_the_laboratory

Polishuk, A. & Verner, I. (2018). An elementary science class with a robot teacher. En W. Lepuschitz, M. Merdan, G. Koppensteiner, R. Balogh, & D. Obdržálek (Eds.), Robotics in Education. Latest results and developments. RiE 2017. Advances in Intelligent Systems and Computing (Vol. 630, pp. 263-273). Springer. https://doi.org/10.1007/978-3-319-62875-2_24

Post, L. S., Guo, P., Saab, N., & Admiraal, W. (2019). Effects of remote labs on cognitive, behavioral, and affective learning outcomes in higher education. Computers & Education, 140, Artículo 103596. https://doi.org/10.1016/j.compedu.2019.103596

Qistina, M., Hermita, N., Alpusari, M., Noviana, E., Antosa, Z., Witri, G., Munjiatun, M., & Indarni, A. (2019). Improving science learning outcomes of elementary students by using interactive multimedia on human order materials. Journal of Physics: Conference Series, 1351, 1-6. https://doi.org/10.1088/1742-6596/1351/1/012075

Rocha Daros, M., Cardoso de Lima, J. P., Rochadel, W., Bento Silva, J., & Schardosim Simão, J. (2016). Remote experimentation in basic education using an architecture with Raspberry Pi. 3rd Experiment International Conference (75-78). IEEE. https://doi.org/10.1109/EXPAT.2015.7463218

Rosales Sánchez, E. M., Rodríguez Ortega, P. G., & Romero Ariza, M. (2020). Conocimiento, demanda cognitiva y contextos en la evaluación de la alfabetización científica en PISA. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 17(2), 1-22. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2020.v17.i2.2302

Schiefer, J., Golle, J., Tibus, M., Trautwein, U., & Oschatz, K. (2017). Elementary school children’s understanding of science: The implementation of an extracurricular science intervention. Contemporary Educational Psychology, 51, 447-463. https://doi.org/10.1016/j.cedpsych.2017.09.011

Secretaría de Educación Pública (SEP). (2017). Aprendizajes clave para la educación integral. Ciencias y tecnología. Educación secundaria. Plan y programas de estudio, orientaciones didácticas y sugerencias de evaluación. En Aprendizajes clave. https://www.planyprogramasdestudio.sep.gob.mx/descargables/biblioteca/secundaria/ciencias/1-LpM-sec-Ciencias-y-Tecnologia.pdf

Skutil, M., Havlíčková, K., & Matějíčková, R. (2013). Didactic material resources in the teaching of national history and geography: Selected results of a qualitative survey. International Journal of Educational and Pedagogical Sciences, 7(10), 2744-2748. https://publications.waset.org/vol/82

Suárez-Ramos, J. C. (2017). Importancia del uso de recursos didácticos en el proceso de enseñanza y aprendizaje de las ciencias biológicas para la estimulación visual del estudiantado. Revista Electronica Educare, 21(2), 1-18. https://doi.org/10.15359/ree.21-2.22

Syarah, E. S., Yetti, E., Fridani, L., Yufiarti, Y. y Hapidin, H., & Pupala, B. (2019). Electronic Comics in Elementary School Science Learning for Marine Conservation. Jurnal Pendidikan IPA Indonesia, 8(4), 500-511. https://doi.org/10.15294/jpii.v8i4.19377

Viner, R. M., Russell, S. J., Croker, H., Packer, J., Ward, J., Stansfield, C., Mytton, O., Bonell, C., & Booy, R. (2020). School closure and management practices during coronavirus outbreaks including COVID-19: A rapid systematic review. The Lancet Child and Adolescent Health, 4(5), 397-404. https://doi.org/10.1016/S2352-4642(20)30095-X

Publicado

2023-02-28

Como Citar

Contribuição de laboratórios remotos para a alfabetização científica: Um estudo de caso (R. Zárate-Moedano, S. L. Canchola-Magdaleno, & J. Suarez-Medellín , Trads.). (2023). Revista Electrónica Educare, 27(2), 1-18. https://doi.org/10.15359/ree.27-2.15806

Edição

Seção

Artigos (Seção avaliada por pares)

Como Citar

Contribuição de laboratórios remotos para a alfabetização científica: Um estudo de caso (R. Zárate-Moedano, S. L. Canchola-Magdaleno, & J. Suarez-Medellín , Trads.). (2023). Revista Electrónica Educare, 27(2), 1-18. https://doi.org/10.15359/ree.27-2.15806

Comentarios (ver términos de uso)