Efecto potencial del cambio climático en la proporción de sexos del caimán en Costa Rica

  • José Armando Escobedo-Galván Consultor Independiente
  • José A. Retana Instituto Meteorológico Nacional
  • Cristina Méndez Refugio Nacional de Vida Silvestre Caño Negro
  • José González-Maya Sierra to Sea Institute & ProCAT Internacional
Palabras clave: Caimán, Caiman crocodilus, cambio climático, Costa Rica, temperatura de incubación, determinación sexual

Resumen

Las especies que exhiben determinación sexual ambiental son vulnerables a los cambios continuos en las condiciones ambientales. Para evaluar cómo las poblaciones silvestres de cocodrilos podrían verse afectadas por las condiciones ambientales y el cambio climático, se consideró las relaciones entre las variables climáticas y la proporción de sexos en una población -natural de caimanes, Caiman crocodilus, en el Refugio Nacional de Vida Silvestre Caño Negro, en el norte de Costa Rica. Se observó un sesgo en la proporción de sexos a favor de los machos para el caimán en nuestro estudio. Estos resultados sugieren que el aumento de la temperatura y la disminución de la precipitación asociada con eventos climáticos de El Niño podrían explicar parte del sesgo. Específicamente, se encontró evidencia de que el aumento de la temperatura mínima del aire produce aumento de la temperatura de incubación, lo que podría favorecer la producción y la supervivencia de machos sobre las hembras. Además, se reveló que la disminución de la precipitación se asocia con una mayor producción de machos. El sesgo en la proporción de sexos no parece ser explicada por otros procesos, tales como la presión de caza, que pueden ser un factor que afecta a las poblaciones de cocodrilos. Se concluye que el cambio climático previsto en esta región probablemente conducirá a un menor número de hembras reproductoras, lo que podría comprometer la viabilidad de esta población de caimanes a largo plazo.

Descargas

La descarga de datos todavía no está disponible.

Citas

Alfaro, E. J. y Soley, F. Eventos cálidos y fríos en el Atlántico Tropical Sur. Tópicos Meteorológicos y Oceanográficos 6, 1999. Costa Rica.

Allsteadt, J. Nesting ecology of Caiman crocodilus in Ca-o Negro, Costa Rica. Journal of Herpetology 28, 1994. USA.

Allsteadt, J. y Lang, J. Sexual dimorphism in the genital morphology of young American alligators, Alligator mississippiensis. Herpetologica 51, 1995. USA.

Álvarez del Toro, Miguel. (1974). Los Crocodylia de México (Estudio Comparativo). Ciudad de México.

Booth, D. T. Influence of incubation temperature on hatchling phenotypes in reptiles. Physiological and Biochemical Zoology 79, 2006. Chicago. http://dx.doi.org/10.1086/499988

Bradshaw, W. E. y Holzapfel, C. M. Genetic shift in photoperiodic response correlated with global warming. Proceedings of the National Academy of Science USA 98, 2001. USA. http://dx.doi.org/10.1073/pnas.241391498

Brazaitis, P. J. The determination of sex in living crocodilians. Herpetological Journal 4, 1968. UK.

Cabrera, J. M. et al. Distribución y abundancia de Caiman crocodilus en el Refugio Nacional de Vida Silvestre Ca-o Negro, Costa Rica. Revista de Biología Tropical 51, 2003. Costa Rica.

Campos, Z. Effect of habitat on survival of eggs and sex ratio of hatchlings of Caiman crocodilus yacare in the Pantanal, Brazil. Journal of Herpetology 27, 1993. USA. http://dx.doi.org/10.2307/1564927

Castillo, R. y J. March. Cambios en los hábitats ecológicos del Refugio Nacional de Vida Silvestre Ca-o Negro 1961-1992, en Ciencias Sociales 62, 1993. Costa Rica.

Chabreck, R. H. y Joanen, T. Growth rates of American alligators in Louisiana. Herpetologica 35, 1979. USA.

Cintra, R. Nesting ecology of the Paraguayan Caiman (Caiman yacare) in the Brazilian Pantanal. Journal of Herpetology 22, 1988. USA. http://dx.doi.org/10.2307/1564000

Crawshaw, P. G. Effects of hunting on the reproduction of the Paraguayan Caiman (Caiman yacare) in the Pantanal of Mato Grosso, Brazil. En: Robinson, J. G. y Redford, K. H. (1991). Neotropical wildlife use and conservation. The University of Chicago Press, Chicago, USA.

Cupul-Maga-a, F. G., Rubio-Delgado, A. y Reyes-Juárez, A. Crecimiento en talla y peso del cocodrilo americano (Crocodylus acutus) durante su primer a-o de vida. Revista Espa-ola de Herpetología 18, 2004. Espa-a.

Deeming, D. C. Prevalence of TSD in crocodilians. En: Valenzuela, N. y Lance, V. A. (2004). Temperature-dependent sex determination in vertebrates. Smithsonian Books, Washington.

Escobedo-Galván, A. H. Temperature variation in nests of Caiman crocodilus (Crocodylia: Alligatoridae). Acta Herpetológica 1, 2006. Italia.

Escobedo-Galván, A. H. Estructura poblacional y proporción de sexos en Caiman crocodilus en Ca-o Negro, Costa Rica. Iheringia Série Zoologia 98, 2008. Brasil.

Ferguson, M. W. J. Post-laying stages of embryonic development in crocodilians. En: Webb, G. J. W., Manolis, S. C. y Whitehead, P. J. (1987). Wildlife management: crocodiles and alligators. Surrey Beatty and Sons, Pty. Ltd, New South Wales, Australia.

Ferguson, M. W. J. y Joanen, T. Temperature of egg incubation determines sex in Alligator mississippiensis. Nature 296, 1982. UK. http://dx.doi.org/10.1038/296850a0

Hawkes, L. A. et al. Investigating the potential impacts of climate change on a marine turtle population. Global Change Biology 13, 2007. http://dx.doi.org/10.1111/j.1365-2486.2007.01320.x

Hulin, V. et al. Temperature- dependent sex determination and global change: are some species at greater risk? Oecologia 160, 2009. http://dx.doi.org/10.1007/s00442-009-1313-1

IPCC. (2007). Climate change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

Janzen, F. J. Climate change and temperature-dependent sex determination in reptiles. Proceedings of the National Academy of Science USA 91, 1994. USA. http://dx.doi.org/10.1073/pnas.91.16.7487

Junier, E. F. (2000). Análisis de la población de Caiman crocodilus en el Refugio Nacional de Vida Silvestre Ca-o Negro, Costa Rica. Tesis de licenciatura, Universidad Nacional, Costa Rica.

Kallimanis, A. S. Temperature-dependent sex determination and climate change. Oikos 119, 2010. Suecia. http://dx.doi.org/10.1111/j.1600-0706.2009.17674.x

Lance, V. A., Elsey, R. M. y Lang, J. W. Sex ratios of American alligators (Crocodylidae): male or female biased? Journal of Zoology 252, 2000. UK. http://dx.doi.org/10.1111/j.1469- 7998.2000.tb00821.x

Lang, J. y Andrews, H. Temperature-dependent sex determination in crocodilians". Journal of Experimental Zoology 270, 1994. http://dx.doi.org/10.1002/jez.1402700105

Laurance, W. F. et al. Global warming, elevational ranges and the vulnerability of tropical biota. Biological Conservation 144, 2011. UK. http://dx.doi.org/10.1016/j.biocon.2010.10.010

Loarie, S. R. et al. The velocity of climate change. Nature 462, 2009. http://dx.doi.org/10.1038/nature08649

Magnusson, W. E. Maintenance of temperature of crocodile nests (Reptilia, Crocodilidae). Journal of Herpetology 13, 1979. USA. http://dx.doi.org/10.2307/1563479

Mallows, C. L. Some comments on Cp. Technometrics 15, 1973.

Mazaris, A.D. et al. Do long-term changes in sea surface temperature at the breeding areas affect the breeding dates and reproduction performance of Mediterranean loggerhead turtles? Implications for climate change. Journal of Experimental Marine Biology and Ecology 367, 2008.

http://dx.doi.org/10.1016/j.jembe.2008.09.025

Méndez, C. (2004). Evaluación de la actividad pesquera artesanal en el Refugio Nacional de Vida Silvestre Ca-o Negro, Los Chiles, Alajuela, Costa Rica. Tesis de Licenciatura. Universidad Nacional, Costa Rica.

Mitchell, N. J. et al. Demographic effects of temperature-dependent sex determination: will tuatara survive global warming? Global Change Biology 16, 2010. http://dx.doi.org/10.1111/j.1365-2486.2009.01964.x

Mora, I. y Amador, J. A. El ENOS, El IOS y la corriente en chorro de bajo nivel en el oeste del Caribe. Tópicos Meteorológicos y Oceanográficos 7, 2001. Costa Rica.

Parmesan, C. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37, 2006. http://dx.doi.org/10.1146/annurev.ecolsys.37.091305.110100

Pike, D. Do Green turtles modify their nesting seasons in response to environmental temperatures? Chelonian Conservation and Biology 8, 2008.

Pi-a, C. I., Larriera, A. y Cabrera, M. R. Effect of temperature on incubation period, sex ratio, hatching success and survivorship in Caiman latirostris (Crocodylia, Alligatoridae). Journal of Herpetology 37, 2003. USA.

Pi-a, C. I. et al. The temperature-sensitive period (TSP) during incubation of broad-snouted caiman (Caiman latirostris) eggs. Amphibia-Reptilia 28, 2007.

Rebêlo, G. H. et al. Growth, sex ratio, population structure, and hunting mortality of Caiman yacare in the Pantanal, Brazil. Vida Silvestre Neotropical 6, 1997. Costa Rica.

Retana, J. (2005). Determinación de índices de extremos climáticos para detectar un cambio en el clima de la zona Norte de Costa Rica. Reporte Técnico, Gestión de Desarrollo, Instituto Meteorológico Nacional, San José.

Retana, J. y Villalobos, J. A. Caracterización pluviométrica de la fase cálida de ENOS en Costa Rica con base en probabilidades de ocurrencia de eventos en tres escenarios: seco, normal y lluvioso. Tópicos Meteorológicos y Oceanográficos 7, 2000. Costa Rica.

Rhodes, W. E. y Lang, J. W. Alligator nest temperatures and hatchling sex ratios in coastal South Carolina. Proceedings of the Annual Conference, Southeastern Association of Fish and Wildlife Agencies 50, 1996. USA.

Thorbjarnarson, J. B. Are crocodilian sex ratios female biased? The data are equivocal. Copeia 2, 1997. USA. http://dx.doi.org/10.2307/1447771

Tucker, J. K. et al. Climatic warming, sex ratios, and red-eared sliders (Trachemys scripta elegans) in Illinois. Chelonian Conservation and Biology 7, 2008. http://dx.doi.org/10.2744/ccb-0670.1

Valenzuela, N. Temperature-dependent sex determination. En: Deeming, D. C. (2004). Reptilian incubation: environment, evolution and behaviour. Nottingham University Press, Nottingham, UK.

Velasco, A. y Ayarzagüena, J. Spectacled caiman Caiman crocodilus. En: Manolis, S. C. y Stevenson, C. (2010). Crocodiles. Status Survey and Conservation Action Plan. Crocodile Specialist Group – UICN, Darwin, Australia.

Villalobos, R. y Retana, J. Un método para el pronóstico de lluvias en Costa Rica: agrupación de a-os con características pluviométricas semejantes para la creación de escenarios climáticos. Tópicos Meteorológicos y Oceanográficos 8, 2001. Costa Rica.

Wapstra E. et al. Climate effects on offspring sex ratio in a viviparous lizard. Journal of Animal Ecology 78, 2009. UK. http://dx.doi.org/10.1111/j.1365-2656.2008.01470.x

Webb, G. J. W., Buckworth, R. y Manolis, S. C. Crocodylus johnstoni in the McKinlay river area, N.T. III. Growth, movement and the population age structure. Australian Wildlife Research 10, 1983. Australia.

Webb, G. J. W. et al. The effects of incubation temperature on sex determination and embryonic development rate in Crocodylus johnstoni and Crocodylus porosus. En: Webb, G. J. W. y Manolis, S. C. (1987). Wildlife management: crocodiles and alligators. Surrey Beatty and Sons, Pty. Ltd, New South Wales, Australia.

Weishampel, J. F., Bagley, D. A. y Ehrhart, L. M. Earlier nesting by loggerhead sea turtles following sea surface warming. Global Change Biology 10, 2004. http://dx.doi.org/10.1111/j.1529-8817.2003.00817.x

Zhang, F. et al. Climate warming and reproduction in Chinese alligators. Animal Conservation 12, 2009. UK. http://dx.doi.org/10.1111/j.1469-1795.2009.00232.x

Publicado
2012-12-01
Cómo citar
Escobedo-Galván, J., Retana, J., Méndez, C., & González-Maya, J. (2012). Efecto potencial del cambio climático en la proporción de sexos del caimán en Costa Rica. Revista De Ciencias Ambientales, 44(1), 49-60. https://doi.org/10.15359/rca.44-2.4
Sección
Artículos