Consideraciones sobre la oferta hídrica de los sistemas acuífero-humedal en la cuenca Magdalena-Cauca, Colombia, a partir de la interpretación de datos de los satélites GRACE
DOI:
https://doi.org/10.15359/rca.57-1.6Palabras clave:
Acuíferos someros; cuenca Magdalena-Cauca; teledetección; seguridad hídrica.Resumen
[Introducción]: Gracias a los recientes datos provistos por los satélites GRACE, es posible, de manera preliminar, estimar los cambios en los almacenamientos de agua subterránea (GWS por sus siglas en inglés), y ofrecer, así, una herramienta novedosa y sin precedentes en el estudio de las dinámicas de los sistemas acuífero-humedal. [Objetivo]: A raíz de las tendencias observadas en GRACE para la cuenca Magdalena-Cauca en Colombia, este estudio tiene como propósito indagar sobre cambios en la oferta hídrica de los sistemas acuífero-humedal. [Metodología]: Para este fin, se realizó un análisis de superposición de mapas, en donde se emplean los datos de GRACE para obtener cifras de recarga y descarga de agua para diferentes áreas de la cuenca y sistemas acuífero-humedal. [Resultados]: Considerando las tendencias de GWS, se obtuvieron volúmenes de agua que se tradujeron en cambios en el almacenamiento de los sistemas acuífero-humedal identificados en la cuenca Magdalena-Cauca. Estos valores muestran una recarga neta entre 2002 y 2010 de 284.65 mm lámina de agua para toda el área de la cuenca, pero una pérdida de 490.68 mm entre 2011 y 2017. Se observó, además, una alta correspondencia entre los eventos ENSO y GWS, en especial, los fuertes eventos La Niña 2010-2011 y El Niño 2015-2016 que causaron fuertes estragos en el país, lo cual se evidencia, en mayor medida, en la zona de la Mojana ubicada al norte de la cuenca. [Conclusiones]: Si bien estos resultados aún deben ser validados con datos de monitoreo continuo, las cifras que se presentan en este estudio invitan a ejecutar acciones en torno a la formulación de mejores políticas y gestión de los recursos hídricos que propendan por la seguridad hídrica futura.
Referencias
Bastidas, B. (2019). Modelo conceptual de la recarga de aguas subterráneas en el nivel somero del sistema hidrogeológico Golfo de Urabá, Evaluando su magnitud y variabilidad espacio – tem- poral. Universidad de Antioquia.
BBC Mundo. (2011). La Niña: Responsable de las lluvias en Colombia. https://www.bbc.com/ mundo/noticias/2011/04/110419_causas_lluvias_colombia_fenomeno_nina_lh
Betancur-Vargas, T., García-Giraldo, D. A., Vélez-Duque, A. J., Gómez, A. M., Flórez-Ayala, C., Patiño, J., & Ortiz-Tamayo, J. Á. (2017). Aguas subterráneas, humedales y servicios ecosisté- micos en Colombia. Biota Colombiana, 18(1), 1-28. https://doi.org/10.21068/c2017.v18n01a1
Bolaños Chavarría, S., & Betancur Vargas, T. (2018). Estado del arte sobre el cambio climático y las aguas subterráneas. Ejemplos en Colombia. Revista Politécnica, 14(26), 52-64. https://doi. org/10.33571/rpolitec.v14n26a5
Bolaños, S., Salazar, J. F., Betancur, T., & Werner, M. (2021). GRACE reveals depletion of water storage in northwestern South America between ENSO extremes. Journal of Hydrology, (Oc- tober), 125687. https://doi.org/10.1016/j.jhydrol.2020.125687
Chen, J., Famigliett, J. S., Scanlon, B. R., & Rodell, M. (2016). Groundwater Storage Changes: Present Status from GRACE Observations. Remote Sensing and Water Resources, 55, 207-227. https://doi.org/10.1007/s10712-015-9332-4
Chen, J. L., Wilson, C. R., Tapley, B. D., Scanlon, B., & Güntner, A. (2016). Long-term ground- water storage change in Victoria, Australia from satellite gravity and in situ observations. Global and Planetary Change, 139, 56-65. https://doi.org/10.1016/j.gloplacha.2016.01.002
Custodio, E. (2010). Las aguas subterráneas como elemento básico de la existencia de numero- sos humedales. Ingeniería del agua, 17(2), 119-135. https://doi.org/10.4995/ia.2010.2971
El Tiempo. (2016). El Niño devastó por incendios área equivalente a tres veces Cali. https:// www.eltiempo.com/archivo/documento/CMS-16610226
Famiglietti, J. S., Lo, M., Ho, S. L., Bethune, J., Anderson, K. J., Syed, T. H., … Rodell, M. (2011). Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophysical Research Letters, 38(3), L03403. https://doi.org/10.1029/2010GL046442
Feng, W., Zhong, M., Lemoine, J.-M., Biancale, R., Hsu, H.-T., & Xia, J. (2013). Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resources Research, 49(4), 2110- 2118. https://doi.org/10.1002/wrcr.20192
García-Giraldo, D., Betancur-Vargas, T., & Villegas, J. C. (2018). Expandiendo el concepto de ecosistema en sistemas acuífero-humedal: Modelo de funcionamiento hidrológico. En El agua subterránea: Recurso sin fronteras: Humedales vinculados al agua subterránea (pp. 221– 227). Editorial de la Universidad Nacional de Salta.
Guarín Giraldo, G. W., & Poveda, G. (2013). Variabilidad espacial y temporal del almacena- miento de agua en el suelo en Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 37(142), 89-113.
IDEAM. (2018). Estudio nacional del agua 2018. Cartilla ENA 2018.
IDEAM, & CORMAGDALENA. (2001). Estudio ambiental de la Cuenca Magdalena - Cauca y elementos para su ordenamiento territorial (Resumen Ejecutivo). Autor.
Jaramillo, U., Cortés-Duque, J., & Flórez, C. (Eds.). (2015). Colombia anfibia. Un país de hume- dales. Volumen I. Colombia Anfibia. Un país de humedales (Vol. 1). Instituto Humboldt.
Joodaki, G., Wahr, J., & Swenson, S. (2014). Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resources Research, 50(3), 2679-2692. https://doi.org/10.1002/2013WR014633
Landerer, F. W., & Swenson, S. C. (2012). Accuracy of scaled GRACE terrestrial water storage es- timates. Water Resources Research, 48(4), W04531. https://doi.org/10.1029/2011WR011453
López López, P., Immerzeel, W. W., Rodríguez Sandoval, E. A., Sterk, G., & Schellekens, J. (2018). Spatial Downscaling of Satellite-Based Precipitation and Its Impact on Discharge Simulations in the Magdalena River Basin in Colombia. Frontiers in Earth Science, 6(68). https://doi. org/10.3389/feart.2018.00068
Ouma, Y. O., Aballa, D. O., Marinda, D. O., Tateishi, R., & Hahn, M. (2015). Use of GRACE time-variable data and GLDAS-LSM for estimating groundwater storage variability at small basin scales: a case study of the Nzoia River Basin. International Journal of Remote Sensing, 36(22), 5707-5736. https://doi.org/10.1080/01431161.2015.1104743
Portmann, F. T., Döll, P., Eisner, S., & Flörke, M. (2013). Impact of climate change on renewable groundwater resources: assessing the benefits of avoided greenhouse gas emissions using se- lected CMIP5 climate projections. Environmental Research Letters, 8(2), 024023. https://doi. org/10.1088/1748-9326/8/2/024023
Poveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Viera, S. C., … Felipe, A. J. (2005). The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. American Me- teorological Society, 133(1), 228-240. https://doi.org/10.1175/MWR-2853.1
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C. J., … Toll, D. (2004). The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85(3), 381-394. https://doi.org/10.1175/BAMS-85-3-381
Rodríguez, E., Sánchez, I., Duque, N., Arboleda, P., Vega, C., Zamora, D., … Burke, S. (2019). Combined Use of Local and Global Hydro Meteorological Data with Hydrological Models for Water Resources Management in the Magdalena - Cauca Macro Basin – Colombia. Water Resources Management. https://doi.org/10.1007/s11269-019-02236-5
Save, H., Bettadpur, S., & Tapley, B. D. (2016). High-resolution CSR GRACE RL05 mas- cons. Journal of Geophysical Research: Solid Earth, 121(10), 7547-7569. https://doi. org/10.1002/2016JB013007
Scanlon, B R, Longuevergne, L., & Long, D. (2012). Ground referencing GRACE satellite esti- mates of groundwater storage changes in the California Central Valley, USA. Water Resources Research, 48(4), W04520-W04520. https://doi.org/10.1029/2011WR011312
Scanlon, Bridget R., Zhang, Z., Save, H., Wiese, D. N., Landerer, F. W., Long, D., … Chen, J. (2016). Global evaluation of new GRACE mascon products for hydrologic applications. Wa- ter Resources Research, 52(12), 9412-9429. https://doi.org/10.1002/2016WR019494
Shamsudduha, M., Taylor, R. G., Jones, D., Longuevergne, L., Owor, M., & Tindimugaya, C. (2017). Recent changes in terrestrial water storage in the Upper Nile Basin: An evaluation of commonly used gridded GRACE products. Hydrology and Earth System Sciences, 21(9), 4533-4549. https://doi.org/10.5194/hess-21-4533-2017
Tiwari, V. M., Wahr, J., & Swenson, S. (2009). Dwindling groundwater resources in northern In- dia, from satellite gravity observations. Geophysical Research Letters, 36(18), L18401. https:// doi.org/10.1029/2009GL039401
Urrea, V., Ochoa, A., & Mesa, O. (2019). Seasonality of Rainfall in Colombia. Water Resources Research, (5), 4149-4162. https://doi.org/https://doi.org/10.1029/2018WR023316
Wada, Y., van Beek, L., & Bierkens, M. (2012). Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour Res, 48, W00L06. https://doi.org/10.1029/2011wr010562
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
A partir del 17 de mayo del 2018 la licencia ha sido actualizada a:
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.