Multispectral analysis to estimate the turbidity as an indicator of the quality of water in reservoirs in Chihuahua State, Mexico
DOI:
https://doi.org/10.15359/rgac.62-1.2Keywords:
Inland waters; water pollution; eutrophication; Remote sensing, spatial distribution of turbidityAbstract
The Basin of Conchos River, located in the State of Chihuahua (Mexico), has suffered a marked deterioration
due to the development of human activities. The urban population growth, industrialization,
and agriculture have significantly degraded water resources of this basin. To examine the quality of its
waters, the reservoirs of Las Vírgenes dam, the Colina lake, and La Boquilla dam have been analyzed, determining the parameters of dissolved oxygen, pH, nitrates, total dissolved solids, turbidity and temperature from water samples. Using these data and the spectral information of Landsat 5 satellite images, 30 linear regression models were evaluated; from these models, turbidity obtained the best match. The regions of spectrum 0.52-0.6 μm and 0.63-0.69 μm, provided by the predictor variable, appeared as the ranges of higher correlation with the values of turbidity. The model used to represent the turbidity spatially distributed shows that La Boquilla dam gets the highest values related to the suspension of sediments provided by ephemeral channels throughout the reservoir.
References
Aboites-Aguilar, L. (2000). Demografía histórica y conflictos por el agua: Dos estudios sobre 40 kilómetros de historia del río San Pedro, Chihuahua. Ciesas.
Aboites-Aguilar, L. (2002). Hacia una historia del río Conchos. Ciesas, Cd. Juárez, Chihuahua.
Almasri, M.N. & Kaluarachchi, J.J. (2004). Assessment and management of long-term nitrate pollution of ground water in agriculture-dominated watersheds. Journal of Hydrology, 295, 225-245. Recuperado de http://doi.org/10.1016/j.jhydrol.2004.03.013
Amado Álvarez, J.P. y Ortíz Franco, P. (2001). Consecuencia de la fertilización nitrogenada y fosfórica sobre la producción de avena irrigada con agua residual. Terra, 19, 175-182. Recuperado de https://chapingo.mx/terra/contenido/19/2/art175-182.pdf
Amado Álvarez, J.P., Pérez-Cutillas, P., Ramírez Valle, O. y Alarcón, J.J. (2016). Degradación de los recursos hídricos en un ambiente semiárido. Las lagunas de Bustillos y de Los Mexicanos (Chihuahua, México). Papeles de Geografía, 62, 107-118. Recuperado de http://dx.doi.org/10.6018/geografia/2016/255811
Brivio P.A., Giardino, C. & Zilioli, E. (2001). Validation of satellite data for quality assurance in lake monitoring applications. Sci Total Environ, 268, 3–13. Recuperado de http://doi.org/10.1016/S0048-9697(00)00693-8
Bustamante, J., Pacios, F., Díaz-Delgado, R. y Aragonés, D. (2009). Predictive models of turbidity and water depth in the Doñana marshes using Landsat TM and ETM images. Journal of Environmental Management, 90, 2219–2225. http://doi.org/10.1016/j.jenvman.2007.08.021
Camargo, J.A. y Alonso, A. (2007). Contaminación por nitrógeno inorgánico en los ecosistemas acuáticos: problemas medioambientales, criterios de calidad del agua, e implicaciones del cambio climático. Ecosistemas, 16, 98-110. Recuperado de www.revistaecosistemas.net/index.php/ecosistemas/article/download/457/438
Calvo B.; Mora, G. y Molina, J. (2007). Evaluación y clasificación preliminar de la calidad del agua de la cuenca del río Tárcoles y el Reventazón Parte I: Análisis de la contaminación de cuatro ríos del área metropolitana.
Tecnología en Marcha 20. Recuperado de http://revistas.tec.ac.cr/index.php/tec_marcha/article/view/46
Carbajal-López, Y., Gómez-Arroyo, S., Villalobos-Pietrini, R., Calderón-Segura, M.E. y Martínez-Arroyo, A. (2016). Biomonitoring of agricultural workers exposed to pesticide mixtures in Guerrero state, Mexico, with comet assay and micronucleus test. Environmental Science and Pollution Research, 23, 2513-2520. Recuperado de https://doi.org/10.1007/s11356-015-5474-7
Carreón, H.E., Pinedo, A. y Lafón, T. (2001). Aplicación de tecnología geoespacial en el estudio de cuencas: caso rio Conchos. XI Congreso Nacional de Irrigación. Simposio 5, 10-15. Manejo Integral de Cuencas. Guanajuato, Gto, México.
Chen, J., Tang, C., Shen, Y., Sakura, Y. & Fukushima, Y. (2003). Nitrate pollution of groundwater in a wastewater irrigated field in Hebei Province, China. IAHS-AISH Publication, 285, 23-27. Recuperado de http://hydrologie.org/redbooks/a285/iahs_285_0023.pdf
Chen, Z., Hu, C., and Muller-Karger, F. (2006). Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery. Remote Sens. Environ., 109, 207–220. Recuperado de http://doi.org/10.1016/j.rse.2006.12.019
Chen, S., Fang, L., Zhang, L. & Huang, W. (2009). Remote sensing of turbidity in seawater intrusion reaches of Pearl River Estuary – A case study in Modaomen water way, China. Estuarine, Coastal and Shelf Science, 82, 119–127. Recuperado de http://doi.org/10.1016/j.ecss.2009.01.003
Chen, F., Xiao, D. & Li, Z. (2016). Developing water quality retrieval models with in situ hyperspectral data in Poyang Lake, China. Geo-Spatial Information Science, 19, 255-266. Recuperado de http://dx.doi.org/10.1080/10095020.2016.1258201
Chien, W.H., Wang, T.S., Yeh, H.C. & Hsieh, T.K. (2016). Study of NDVI Application on Turbidity in Reservoirs. J Indian Soc Remote Sens, 44, 829–836. Recuperado de http://dx.doi.org/10.1007/s12524-015-0533-6
Comisión Internacional de Límites y Aguas [CILA]. (1944). Tratado entre el gobierno de los Estados Unidos Mexicanos y el gobierno de los Estados Unidos de América de la distribución de las aguas internacionales de los ríos Colorado, Tijuana y Bravo, desde Fort Quitman, Texas, hasta el Golfo de México. Comisión Internacional de Límites y Aguas Entre México y los Estados Unidos Sección Mexicana, 28 p. Recuperado de http://www.sre.gob.mx/cila/
Comisión Nacional para el Conocimiento y Uso de la Biodiversidad [CONABIO]. (2014). La biodiversidad en Chihuahua: Estudio de Estado. México.
Comisión Nacional para el Conocimiento y Uso de la Biodiversidad [CONABIO]. (2016). Recuperado de: http://www.conabio.gob.mx/informacion/gis/. Comisión intersecretarial del Gobierno de México.
Diario Oficial de la Federación [DOF] (1997a). NOM-OO1-ECO-1997. México. 6 de enero de 1997.
Diario Oficial de la Federación [DOF] (1997b). NOM-127-SSA1-1994. México. 10 de enero de 1997.
Estrada Gutiérrez, G., Silva Hidalgo, H., Villalba1, M.L., Astorga Bustillos, F. y Franco Estrada, B. (2015). Tasa de acumulación de sedimentos en embalses del río Conchos, Chihuahua, México. 1er Congreso Iberoamericano sobre sedimentos y ecología Querétaro, Querétaro México.
Feyisa, G.L., Meilby, H., Fensholt, R. & Proud, S.R. (2014). Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23–35. Recuperado de http://doi.org/10.1016/j.rse.2013.08.029
Fichot, C.G., Downing, B.D., Bergamaschi, B.A., Windham-Myers, L., Marvin-DiPasquale, M., Thompson, D.R. & Gierach, M.M. (2016). High-Resolution Remote Sensing of Water Quality in the San Francisco Bay-Delta Estuary.
Environmental Science & Technology, 50, 573-583. Recuperado de http://doi.org/10.1021/acs.est.5b03518
Friedl, G. & Wuest, A. (2002). Disrupting biogeochemical cycles. Consequences of damming. Aquat. Sci., 64, 55–65. Recuperado de http://doi.org/10.1007/s00027-002-8054-0
Gholizadeh, M.H., Melesse, A.M. & Reddi, L. (2016). A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors, 16, 2-43. Recuperado de https://doi.org/10.3390/s16081298
Giardiano, C., Pepe, M., Brivio, P.A., Ghezzi, P. & Zilioli, E. (2001). Detecting chlorophyll, secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery. Sci Total Environ, 268, 19–29. Recuperado de http://doi.org/10.1016/S0048-9697(00)00692-6
Gitelson, A.A., Dall’Olmo, G., Moses, W., Rundquist, D.C., Barrow, T., Fisher, T. R., & Holz, J. (2008). A simple semianalytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sens. Environ., 112, 3582–3593. Recuperado de http://doi.org/10.1016/j.rse.2008.04.015
Hakanson, L., Mikrenska, M., Petrov, K., & Foster I. (2005). Suspend particulate matter (SPM) in rivers: empirical data and models. Ecological Modelling, 183, 251-267. Recuperado de http://doi.org/10.1016/j.ecolmodel.2004.07.030
Hansen, C.H., Williams, G.P., Adjei, Z., Barlow, A., Nelson, E.J. & Miller, A.W. (2015). Reservoir water quality monitoring using remote sensing with seasonal models: case study of five central-Utah reservoirs. Lake and Reservoir Management, 31, 225–240. Recuperado de http://dx.doi.org/10.1080/10402381.2015.1065937
Hou, X., Feng, L., Duan, H., Chen, X., Sun, D. & Shi, K. (2017). Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China. Remote Sensing of Environment, 190, 107-121. Recuperado de http://doi.org/10.1016/j.rse.2016.12.006
Instituto Nacional de Estadística y Geografía [INEGI]. X.I.I. (2015). Censo General de población y Vivienda. Recuperado de http://www.beta.inegi.org.mx/temas/estructura/
Jack, B. (2006). Member state responsibilities concerning nitrate pollution and eutrophication: A role for the waste framework directive?: EC environmental law-agricultural pollution-eutrophication-urban waste water treatment directive-agricultural nitrates directive-waste framework directive-EIA directive-groundwater directive Commission of the European Communities v Kingdom of Spain, intervener. Journal of Environmental Law, 18, 301-311. Recuperado de https://papers.ssrn.com/sol3/papers.cfm?abstract_id=914764
Kameyama, S., Yamagata, Y., Nakamura, F. & Kaneko, M. (2001). Development of WTI and turbidity estimation model using SMA — application to Kushiro Mire, eastern Hokkaido, Japan. Remote Sensing of Environment, 77, 1–9. Recuperado de http://doi.org/10.1016/S0034-4257(01)00189-4
Kloiber, S.M., Anderle, T.H., Brezonik, P.L., Olmanson, L.G., Bauer, M.E. & Brown, D.A. (2000). Trophic state assessment of lakes in the Twin Cities (Minnesota, USA) region by satellite imagery. Arch Hydrobiol Adv Limnol, 55, 137–151.
López, J. Z. (2014). Programa de manejo integral de la cuenca del río conchos. Primera edición, DR© Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Liga Periférico–Insurgentes Sur 4903 Parques del Pedregal.
Martínez-Valenzuela, C. y Gómez-Arroyo, S. (2007). Genotoxic risk in agricultural workers exposed to pesticides. Revista Internacional de Contaminación Ambiental, 23, 185-200. Recuperado de www.revistascca.unam.mx/rica/index.php/rica/article/download/21636/21636
McDonald, R.I., Douglas, I., Revenga, C., Hale, R., Grimm, N., Grönwall, J. & Fekete, B. (2011). Global urban growth and the geography of water availability, quality, and delivery. Ambio, 40, 437-446. Recuperado de https://dx.doi.org/10.1007%2Fs13280-011-0152-6
Melgoza Castillo, A., Royo, M. y Ortega Ochoa, C. (2014). Sobrepastoreo, en: La biodiversidad en Chihuahua: Estudio de Estado. CONABIO. México, 228-230. Recuperado de http://www.biodiversidad.gob.mx/region/EEB/pdf/Chihuahua_Final_Web.pdf
Michaud, J. P. (1991). A citizen’s guide to understanding and monitoring lakes and streams, Publ. #94-149, Washington State Dept. of Ecology, Publications Office, Olympia, WA.,
Moreno, D.P., Quintero, J. y López, A. (2010). Métodos para identificar, diagnosticar y evaluar el grado de eutrofia. ContactoS, 78, 25-33. Recuperado de http://www.izt.uam.mx/newpage/contactos/anterior/n78ne/eutrofia2.pdf
Olmanson, L.G., Brezonik, P.L. & Bauer, M.E. (2013). Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: The Mississippi River and its tributaries in Minnesota. Remote Sensing of Environment, 130, 254-265. Recuperado de http://doi.org/10.1016/j.rse.2012.11.023
Palà, V. y Pons, X. (1995). Incorporation of relief into geometric corrections based on polynomials. Photogrammmetric Engineering and Remote Sensing, 61, 935-944.
Potes, M., Costa, M.J., da Silva, J.C.B., Silva, A.M. & Morais, M. (2011). Remote sensing of water quality parameters over Alqueva, Reservoir in the south of Portugal. International Journal of Remote Sensing, 32, 3373–3388. Recuperado de http://dx.doi.org/10.1080/01431161003747513
Potes, M., Costa, M.J., & Salgado, R. (2012). Satellite remote sensing of water turbidity in Alqueva reservoir and implications on lake modelling. Hydrol. Earth Syst. Sci., 16, 1623–1633. Recuperado de http://dx.doi.org/10.5194/hess-16-1623-2012
Ramos, O.R., Sepúlveda, M.R. y Villalobos, M.F. (2003). Agua en el medio ambiente. Muestreo y análisis. Universidad Autónoma de Baja California. Ed. Plaza y Valdés, México.
Raynal, J.A. y Rodríguez-Pineda, J.A. (2008). Posibles escenarios del impacto del cambio climático en la cuenca del río Conchos, México. XX Congreso Nacional de Hidráulica, Toluca, Estado de México, México.
Rawson, D.S. (1951) The Total Mineral Content of Lake Waters. Ecology, 32, 669-672. Recuperado de http://doi.org/10.2307/1932733
Reyes-Gómez, V.M., Núñez-López, D., Muñoz-Robles, C.A., Gadsden, H., Rodríguez, J.A., López, M.A. y Hinojosa, O.R. (2006). Caractérisation de la sécheresse hydrologique dans le bassin versant Rio Conchos, Chihuahua, Mexique. Science et Changements Planétaires-Sécheresse, 17, 475-484. Recuperado de http://doi.org/10.1684/sec.2006.0059
Robert, E., Grippa, M., Kergoat, L., Pinet, S., Gal, L., Cochonneau, G. & Martinez, J.-M. (2016). Monitoring water turbidity and surface suspended sediment concentration of the Bagre Reservoir (Burkina Faso) using MODIS and field reflectance data. International Journal of Applied Earth Observation and Geoinformation, 52, 243-251.
Recuperado de http://doi.org/10.1016/j.jag.2016.06.016
Secretaría de Economía. (1996). Establecimiento de los límites máximos permisibles de contaminantes en las descargas de agua residuales en aguas y bienes nacionales. NOM-001-SEMARNAT-1996. Diario Oficial de la federación. 6 de enero de 1997. México.
Tilman, D.; Kilham, S. S. & Kilham, P. (1982). Phytoplankton community ecology: The role of limiting nutrients. Ann. Rev. Ecol. Syst., 13, 349-372. Recuperado de http://www.annualreviews.org/doi/abs/10.1146/annurev.es.13.110182.002025
Vermote, E.F., Tanré, D., Deuzé, J.L., Herman, M. & Morcrette, J.J. (1997). Second simulation of the satellite signal in the solar spectrum, 6s: an overview. IEEE Transactions on Geoscience and Remote Sensing, 35, 675–686.
Recuperado de https://modis-atmos.gsfc.nasa.gov/new_reference/data/papers/Vermote_et_al_B.1997.pdf
Vogt, M.C. & Vogt, M.E (2016). Near-Remote Sensing of Water Turbidity Using Small Unmanned Aircraft Systems. Environmental Practice, 18, 18–31. Recuperado de http://www.tandfonline.com/doi/abs/10.1017/S1466046615000459
Von Gunten, L., Grosjean, M., Eggenberger, U., Grob, P., Urrutia, R. & Morales, A. (2009). Pollution and eutrophication history AD 1800-2005 as recorded in sediments from five lakes in Central Chile. Global and Planetary Change, 68, 198-208. Recuperado de http://doi.org/10.1016/j.gloplacha.2009.04.004
Zhou, K.-P., Bi, W.-H., Zhang, Q.-H., Fu, X.-H. & Wu, G.-Q. (2016). Influence of temperature and turbidity on water COD detection by UV absorption spectroscopy. Optoelectronics Letters, 12, 461-464. Recuperado de http://doi.org/10.1007/s11801-016-6178-z
Downloads
Published
How to Cite
Issue
Section
License
Proposed policy for journals offering Open Access
Authors publishing their works in the Journal acknowledge and agree to the following terms:
a) Authors retain the copyrights to their works and guarantee the Journal the right to be the first to publish their works, under the Creative Commons License Attribution-NonCommercial-ShareAlike 4.0 International, CC BY-NC-SA 4.0 International (https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es), which allows others to share works upon complying with the acknowledgment of authorship and mention of the Journal as the original publisher of the work.
b) Authors are permitted to separately establish additional agreements for the non-exclusive distribution of the official edition of the work published in the Journal (for example, authors may desire to place the work in an institutional repository or incorporate it into a book that is to published elsewhere) so long they acknowledgment to recognize the Journal as the original publisher. The aforementioned additional agreements must respect the terms of the non-profit character and sharing philosophy of the original license (CC BY-NC-SA 4.0 International, https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es).
c) Authors are encouraged to archive the post-print or editor/PDF version in Open Access repositories.