Monitoring of panelera cane production using GIS and remote sensing tools, 2016-2017 years, Mérida, Venezuela

Authors

  • Carlos Enrique Guillén-García, Ingeniero Ministerio del Poder Popular para la Agricultura Productiva y Tierras, Venezuela, Bolivarian Republic of
  • Amanda Mogollón -Rojo, Geografa Universidad de los Andes, Venezuela, Bolivarian Republic of
  • Mirian Josefina Dávila-Albarrán, Ingeniera Universidad de los Andes, Venezuela, Bolivarian Republic of
  • Katherina Boscán-Árraga, Licenciada Ministerio del Poder Popular para la Agricultura Productiva y Tierras, Venezuela, Bolivarian Republic of

DOI:

https://doi.org/10.15359/rgac.63-2.9

Keywords:

Crop monitoring; cane panelera; Saccharum officinarum sp; remote sensing; GIS; Mérida

Abstract

Currently, methodologies for evaluating agricultural production do not allow precision tracking or monitoring of the production. The state Merida in Venezuela contributes to the country with more than 515,000 MT in agricultural goods. Lack of the above mentioned methodologies hinder the truthful capture of agricultural production data; alternative technologies are being used to overcome such deficiency. Panelera cane (Saccharum officinarum sp) has been monitored through Sentinel 2A satellite images captured from 27/03/2016 to 01/04/2017; and processed with QGIS-2.18 software. Agrarian records were used to establish training and verification areas of the supervised classification 379 hectares (ha) of crop were identified by 27/03/2016; and 361 ha by 01/04/2017. The present evaluation identified 51.6% (129 ha) of additional area as that reported by the official institutions of Mérida for the year 2016; production is estimated to exceed by more than 50% in 2017 because institutions has not consolidated the information.

References

Abdel-Rahman, E.M y Ahmed, F.B, (2008ª). The application of remote sensing techniques to sugarcane (Saccharum spp. hybrid) production: a review of the literature. En International Journal of Remote Sensing. 29, (13), 3753-3767.

Abdel-Rahman, E.M, Ahmed, F.B, Van den Berg, M & M.J. Way. (2008b). Preliminary study on sugarcane Thrips (Fulmekiola serrata). Damage detection using imaging spectroscopy. P 287-289. En: Congress of South African Sugar Technologists’ Association, 81. Proceeding. Durban. South African. 29-31 July. SASTA. Durban. South African.

Abdel-Rahman, E.M. (2010). The potential for using remote sensing to quantify stress in and predict yield of sugarcane (Saccharum spp. hybrid). (Thesis submitted to the Faculty of Science and Agriculture, at the University of KwaZulu-Natal, in fulfillment of the requirements for the degree of Doctor of Philosophy in Environmental Sciences). Pietermaritzburg, South Africa. 206p.

Anindya S. (2016). Remote Sensing in Agriculture. En International Journal of Environment, Agriculture and Biotechnology (IJEAB). 1, (3). 362-367 p.

Butt, A., Shabbir, R., Ahmad, S., Aziz, N. (2015). Land use mapping and analysis using Remote Sensing and GIS: A case of study of Simly watershed, Islamabad, Pakistan. En The Egyptian Journal of Remote Sensing and Space Science. 18, 251-259.

Chen, Z. (2008). Monitoring and Management of Agriculture with Remote Sensing. In: Liang S. (Eds). En Advances in Land Remote Sensing. Springer, Dordrecht.

Chuvieco, E. (2002a). Fundamentos de Teledetección Espacial. Madrid, España: Rialp.

Chuvieco, E. (2002b). Teledetección Ambiental. La observación de la tierra desde el espacio. Barcelona, España: Ariel, S. A.

Farrell, M. & Rivas, R. (2010). Estimación de Rendimiento en Girasol a Partir de Imágenes Captadas por el Sensor MODIS-TERRA. En Ciencia, 5, (19), 29.

Fortes, C. & Demattê, J. A. M. (2006). Discrimination of sugarcane varieties using Landsat 7 ETM+ spectral data. En International Journal of Remote Sensing. 27, (7), 1.395 – 1.412.

Gaceta Oficial (G.O) de la República Bolivariana de Venezuela de fecha 18/10/2017. Decreto 047/2017 de fecha 17/10/2017 del Ministerio del Poder Popular para la Agricultura Productiva y Tierras (MPPAPT). Recuperado: http://www.tsj.gob.ve/gaceta-oficial

Gãlvao, L.S., Formaggio, A.R. & Tisot, D.A. (2005). Discrimination of sugarcane varieties in Southeastern Brazil with EO-1 Hyperion data. Remote Sensing and Environment. 94, 523-534.

Girard, M-C. & Girard, C-M. (2010). Traitement des données de télédétection. Paris, Francia: Dunod.

Guillén, C. & Dávila, M. (2017). Guía teórica de Teledetección agrícola. Inventario de cultivos agrícolas. Diplomado en Teledetección y Sistemas de Información Geográfica aplicado a la Agricultura..

Instituto Geográfico Venezolano Simón Bolívar (IGVSM). (2014). Geoportal Nacional Simón Bolívar. Venezuela. Recuperado: http://www.igvsb.gob.ve/

Johnson, R., Viator, R.P., Veremis, J.C., Richard, E.P. & Zimba, P. V. (2008). Discrimination of sugarcane varieties with pigment profiles and high resolution, hyperspectral leaf reflectance data. En Journal of the American Society of Sugar Cane Technologists. 28, 63-75.

Kaliraj, S., Chandrasekarb, N., Ramachandrana, K., Srinivasb, Y., & Saravanan, S. (2017). Coastal landuse and land cover change and transformations of Kanyakumari coast, India using remote sensing and GIS. En the Egyptian Journal of Remote Sensing and Space Sciences. Article in press.

Martínez, F. (1963). Estudio Integral de la Cuenca del Chama; Sector Lagunillas de Urao. Instituto de Geografía y Conservación de Recursos Naturales. Universidad de los Andes. Mérida, Venezuela.

Miphokasap, P., Honda, K., Vaiphasa, C., Souris, M., & Nagai, M. (2012). Estimating Canopy Nitrogen Concentration in Sugarcane Using Field Imaging Spectroscopy. En Remote Sensing.4, 1.651-1.670.

Mosquera, S., Carrera, J. & Villada, H. (2007). Variables que Afectan la Calidad de la Panela Procesada en el Departamento del Cauca. Facultad de Ciencias Agropecuarias, 5(1),18.

Quantum GIS Development Team. Quantum GIS Geographic Information System, Open Source Geospatial Foundation (2009). Recuperado: http://qgis.osgeo.org.

Rojas, J. (1970). El Paisaje Semiárido de la Cuenca Media del Río Chama (Andes Venezolanos). (Trabajo Especial de Grado. Escuela de Geografía. Universidad de Los Andes). Mérida Venezuela.

Santiago, O. (2006). Teledetección fundamental. 3a edición. Escuela técnica superior de ingenieros en topografía, geodesia y cartografía. Universidad politécnica – Madrid.

USGS. United States Geological Survey. (2017). Recuperado: https://earthexplorer.usgs.gov/

Published

2019-06-17

How to Cite

Guillén-García, C. E., Mogollón -Rojo, A., Dávila-Albarrán, M. J., & Boscán-Árraga, K. (2019). Monitoring of panelera cane production using GIS and remote sensing tools, 2016-2017 years, Mérida, Venezuela. Geographical Journal of Central America, 2(63), 249-268. https://doi.org/10.15359/rgac.63-2.9

Issue

Section

Case studies (Peer reviewed)

How to Cite

Guillén-García, C. E., Mogollón -Rojo, A., Dávila-Albarrán, M. J., & Boscán-Árraga, K. (2019). Monitoring of panelera cane production using GIS and remote sensing tools, 2016-2017 years, Mérida, Venezuela. Geographical Journal of Central America, 2(63), 249-268. https://doi.org/10.15359/rgac.63-2.9

Most read articles by the same author(s)