SPATIO-TEMPORAL ANALYSIS OF SURFACE TEMPERATURE INDICATORS AS A WAY OF EVALUATING AREAS WITH FOREST PRESERVATION
DOI:
https://doi.org/10.15359/rgac.74-1.12Keywords:
Changes in the use of soil, TVDI, LST, water stress, bioma preservationAbstract
This article aims to analyze the variation of the Soil Surface Temperature (LST) and the Thermal Dryness Index (TVDI) in the hydrographic sub-basin that supplies the municipality of Paracatu, Brazil, and the Paracatu State Park, located in the interior of the basin and created to preserve the cerrado biome, restrict agricultural activities and guarantee water resources for local public supply. Images from the Landsat 5 and 8 satellites were used, whose results indicate that changes in land use are contributing to the water stress of the vegetation present there, and the spatial behavior of LST and TVDI indicates that the creation of the Park was an efficient practice in the preservation of the biome, concluding that they are timely indicators for the monitoring and management of public agencies to monitor human activities.
References
Alemu, M. (2019). Analysis of spatio-temporal land surface temperature and normalized difference vegetation index changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Journal of Resources and Ecology, 10(1), 77-85. http://dx.doi.org/10.5814/j.issn.1674-764x.2019.01.010
Algretawee, H. (2022). The effect of graduated urban park size on park cooling island and distance relative to land surface temperature (LST). Urban Climate, 45(8), s.p. https://doi.org/10.1016/j.uclim.2022.101255.
Álvares, C; Stape, J; Sentelhas, P; Gonçalves, J; Sparovek, G. (2014). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(1), 711-728. http://www.dca.iag.usp.br/material/mftandra2/ACA0225/Alvares_etal_Koppen_climate_classBrazil_MeteoZei_2014.pdf
Bôas, S; Lima, L. (2022). Áreas protegidas e conflitos socioambientais: desafios às políticas públicas de desenvolvimento na faixa de fronteira do Acre (BR). Tempo da Ciência, 29(58), 114-128. https://e-revista.unioeste.br/index.php/tempodaciencia/article/view/30437/21411
Carrasco, R; Pinheiro, M; Marcato J; Cicerelli, R; Silva, P; Osco, L; Ramos, A. (2020). Land use/land cover change dynamics and their effects on land surface temperature in the western region of the state of São Paulo, Brazil. Regional Environmental Change, 20(3), 1-12. https://doi.org/10.1007/s10113-020-01664-z.
Chen, D; Zhang, F; Zhang, M; Meng, Q; Jim, C; Shi, J; Tan, M; Ma, X. (2022). Landscape and vegetation traits of urban green space can predict local surface temperature. Science of The Total Environment, 825(8), s.p. https://doi.org/10.1016/j.scitotenv.2022.154006
Correia-Filho, W; Oliveira-Júnior, J; Silva-Júnior, C; Santiago, D. (2022). Influence of the El Niño–Southern Oscillation and the sypnotic systems on the rainfall variability over the Brazilian Cerrado via Climate Hazard Group InfraRed Precipitation with Station data. International Journal of Climatology, 42(6), 3308-3322. https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.7417
Costa, M; Vilarinho, C; Muller, M; Monte-Mor, R; Gonçalves, J. (2021). A Geração de Conflitos pelo Uso da Água na Bacia do Rio Paracatu, Noroeste de Minas Gerais, Brasil. Revista Brasileira de Geografia Física, 14(1): 834-846. https://doi.org/10.26848/rbgf.v14.2.p834-846.
Cunha, J; Bravo, J. (2022). Effects of environmental protection policies on fragile areas of a watershed occupied by agriculture in the Brazilian Cerrado. Journal of Environmental Management, 319(8), s.p. https://doi.org/10.1016/j.jenvman.2022.115695.
Da Silva, L; Rocha, A; De Souza, C; Leite, M. (2023). Análise da temperatura de superfície terrestre e variáveis biofísicas em domínios de vegetação do Brasil. Revista do Departamento de Geografia, 43(8), s.p. https://doi.org/10.11606/eISSN.2236-2878.rdg.2023.181068
Decreto n.º 45.567, de 22 de março de 2011. (2011). Cria o Parque Estadual de. Paracatu, localizado no Município de Paracatu, e dá outras providências. Diário Oficial da República Federativa do Brasil. Brasília, DF, 22 mar. 2011. https://www.almg.gov.br/legislacao-mineira/texto/DEC/45567/2011/
Dissanayake, D; Morimoto, T; Murayama, Y; Ranagalage, M. (2019). Impact of landscape structure on the variation of land surface temperature in sub-Saharan region: a case study of Addis Ababa using Landsat data (1986–2016). Remote Sensing of Environment, 12(8), 313–329. https://doi.org/10.3390/su11082257.
dos Santos, A; Simionatto, H. (2023). Methodological proposal for evaluating the transformation of urban microclimate in medium-sized cities: a case study in the urban mesh of the municipality of Paracatu, Minas Gerais. RAEGA - O Espaço Geográfico em Análise, 57(1), 46-65. https://revistas.ufpr.br/raega/article/view/88156
dos Santos, A; Simionatto, H; Arantes, L; Simonetti, V; Oliveira, R; de Sales, J; Silva, D. (2023). The Influence of Land Use and Land Cover on Surface Temperature in a Water Catchment Sub-Basin. Sociedade & Natureza, 35(1), s.p. https://seer.ufu.br/index.php/sociedadenatureza/article/view/69161
dos Santos, A; Simionatto H; Tondato, A; Santacruz, S; Silva, D. (2024). Relación espacio-temporal de la temperatura superficial con el tipo de cobertura y uso del suelo, en los barrios del municipio de Paracatu, Mina Gerais, Brasil. Anales de Geografía de la Universidad Complutense, 44(1), 235-249. https://revistas.ucm.es/index.php/AGUC/article/view/94211
dos Santos, A; Santil, F; Carbone, S; Silva, C. (2022). The influence of urban and mineral expansion on surface temperature variation. Acta Scientiarum. Technology, 45(1), s.p. https://periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/60117
dos Santos, H; Jacomine, P; Anjos, L; Oliveira, V; Lunbreras, J; Coelho, M; Almeida, J; Araujo filho, J; Oliveira, J; Cunha T. (2018). Sistema Brasileiro de Classificação de Solos. DF: Embrapa. Brasília.
Duarte, M; Ribeiro, A. (2023). Influência do El Niño e La Niña na produtividade de plantios de Eucalipto em distintas regiões no Brasil. Ciência Florestal, 33(1), s.p. https://doi.org/10.5902/1980509861334.
Govind, N; Ramesh, H. (2019). The impact of spatiotemporal patterns of land use land cover and land surface temperature on an urban cool island: a case study of Bengaluru. Remote Sensing of Environment, 12(5), 313–329. https://doi.org/10.1007/s10661-019-7440-1.
Hunke, P; Roller, R; Zeilhofer, P; Schroder, B; Muller, E. (2015). Soil changes under land-uses in the Cerrado of Mato Grosso, Brazil. Geoderma Reginal, 4(8), 31-43. https://doi.org/10.1016/j.geodrs.2014.12.001.
Instituto Estadual de Florestas. (2011). Parque Estadual de Paracatu. IEF. http://www.ief.mg.gov.br/Parque-estadual/1412
Instituto Brasileiro de Geografia e Estatística. (2024). Paracatu. IBGE. https://cidades.ibge.gov.br/brasil/mg/paracatu/panorama
Kaiser, E; Rolim, S; Grondona, A; Hackmann, C; Linn, R; Kafer, P; da Rocha, N; Diaz, L. (2022). Spatiotemporal influences of lulc changes on land surface temperature in rapid urbanization area by using Landsat-TM and TIRS images. Atmosphere, 13(3), 460. https://doi.org/10.3390/atmos13030460.
Klink, C; Sato, M; Cordeiro, G; Ramos, M. (2020). The role of vegetation on the dynamics of water and fire in the Cerrado ecosystems: Implications for management and conservation. Plants, 9(12), s.p. https://doi.org/10.3390/plants9121803.
Köppen, W. (1931). Grundriss der Klimakunde. Germany.
Latrubesse, E; Arima, E; Ferreira, M; Nogueira, S; Wittmann, F; Dias, M; Dagosta, F; Bayer, M. (2019). Fostering water resource governance and conservation in the Brazilian Cerrado biome. Conservation Science and Practice, 1(9), s.p. https://doi.org/10.1111/csp2.77.
Malav, L; Yadav, B; Tailor, B; Pattanayak, S; Singh, S; Kumar, N; Reddy, G; Mina, B; Dwivedi, B; Jha, P. (2022). Mapping of Land Degradation Vulnerability in the Semi-Arid Watershed of Rajasthan, India. Sustainability. 14(16), 1-16. https://doi.org/10.3390/su141610198.
MAPBIOMAS. (2023). Área de agropecuária no Brasil cresceu 50% nos últimos 38 anos. https://brasil.mapbiomas.org/2023/10/06/area-de-agropecuaria-no-brasil-cresceu-50-nos-ultimos-38-anos/
Martins, A; Galvani, E. (2020). Relação entre uso e cobertura da terra e parâmetros biofísicos no Cerrado Brasileiro. Revista do Departamento de Geografia, 40(1), 148-162. https://doi.org/10.11606/rdg.v40i0.167739.
Martins, C; Lopes, P; Martins, A. (2022). Estimativa do TVDI para avaliação das condições hídricas em áreas de produção de cana-de-açúcar no semiárido brasileiro. Revista Brasileira de Geografia Física, 15(5), 2301-2312. http://dx.doi.org/10.26848/rbgf.v15.5.p2301-2312.
Njoku, E; Tenenbaum, D. (2022). Quantitative assessment of the relationship between land use/land cover (LULC), topographic elevation and land surface temperature (LST) in Ilorin, Nigeria. Remote Sensing Applications: Society and Environment, 27(1), s.p. https://doi.org/10.1016/j.rsase.2022.100780.
Paixão, B; Costa, H; Sacramento, B; Sousa, J; Lourenço, R. (2020). Análise das alterações de temperatura superficial na Bacia Hidrográfica do Rio Paiol, Ibiúna (SP). Revista Gestão & Sustentabilidade Ambiental, 9(1), 108-124. https://doi.org/10.19177/rgsa.v9e02020108-124.
Parra-Sanchez, E; Banks-Leite, C. (2020). The magnitude and extent of edge effects on vascular epiphytes across the Brazilian Atlantic Forest. Scientific Reports, 10(1), s.p. https://www.nature.com/articles/s41598-020-75970-1
Schirmbeck, L; Fontana, D; Schirmbeck, J; Bremm, C. (2019). TVDI Obtido de Imagens OLI/TIRS e MODIS. Revista Brasileira de Meteorologia, 34, 573-583. https://doi.org/10.1590/0102-7786344070
Saha, S; Saha, A; Das, M; Saha, A; Sarkar, R; Das, A. (2021). Analyzing spatial relationship between land use/land cover (LULC) and land surface temperature (LST) of three urban agglomerations (UAs) of Eastern India. Remote Sensing Applications: Society and Environment, 22(1), s.p. https://doi.org/10.1016/j.rsase.2021.100507.
Sandholt, I; Rasmusen, K; Andersen, J. (2002). A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Enviromenmt, 79(2-3), 213-224. https://doi.org/10.1016/S0034-4257(01)00274-7.
Souza Jr, C; Shimbo, J; Rosa, M; Parente, L; Alencar, A; Rudorff, B; Hasenack, H; Matsumoto, M; Ferreira, L; Souza-Filho, P; de Oliveira, S; Rocha, W; Fonseca, A; Marques, C; Diniz, C; Costa, D; Monteiro, D; Rosa, E; Vélez-Martin, E; Weber, E; Lenti, F; Paternost, F; Pareyn, F; Siqueira, J; Viera, J; Ferreira, L; Saraiva, M; Sales, M; Salgado, M; Vasconcelos, R; Galano, S; Mesquita, V; Azevedo, T. (2020). Reconstructing three decades of lande use and landa cover changes in Brazilian Biomes with Landsat archive and Earth engine. Remote Sensing, 12, 1-24. https://doi.org/10.3390/rs12172735
Souza, J; Mendes, T; Bignotto, R; Alcântara, E; Massi, K. (2024). Land use dynamics in a tropical protected area buffer zone: is the management plan helping?. Journal of Environmental Studies and Sciences, 1-11. https://doi.org/10.1007/s13412-024-00905-5.
Ullah, W; Ahmad, K; Ullah, S; Tahir, A; Javed, M; Nazir, A; Abbasi, A; Aziz, M; Mohamed, A. (2023). Analysis of the relationship among land surface temperature (LST), land use land cover (LULC), and normalized difference vegetation index (NDVI) with topographic elements in the lower Himalayan region. Heliyon, 9(1), s.p. https://doi.org/10.1016/j.heliyon.2023.e13322.
United States Geological Service. (2016). Landsat 8 (L8) data users handbook. Department of the Interior U.S. Geological Survey. EROS Sioux Falls, South Dakota. (LSDS-1574. V. 2.0). USGS. https://earthexplorer.usgs.gov/
United States Geological Survey. (2023). Earth Explorer. USGS. https://earthexplorer.usgs.gov/
Wang, Y; Hu, B; Myint, S; Feng, C; Chow, W; Passy, P. (2018). Patterns of land change and their potential impacts on land surface temperature change in Yangon, Myanmar. Sci Total Environ, 643(1), 738–750. https://doi.org/10.1016/j.scitotenv.2018.06.209.
Xu, X; Pei, H; Wang, C; Xu, Q; Xei, H; Jin, Y; Feng, Y; Tong, X; Xiao, C. (2023). Long-term analysis of the urban heat island effect using multisource Landsat images considering inter-class differences in land surface temperature products. Science of The Total Environment, 858(1), 159777. https://doi.org/10.1016/j.scitotenv.2022.159777.
Yao, X; Yu, K; Zeng, X; Lin, Y; Ye, B; Shen, X; Liu, L. (2022). How can urban parks be planned to mitigate urban heat island effect in “Furnace cities”? An accumulation perspective. Journal of Cleaner Production, 330(1), 129852. https://doi.org/10.1016/j.jclepro.2021.129852.
Yuan, L; Li, L; Zhang, T; Chen, L; Zhao, J; Hu,S; Cheng, L; Liu, W. (2020). Soil Moisture Estimation for the Chinese Loess Plateau Using MODIS-derived ATI and TVDI. Remote Sensing, 12, 1-35. https://doi.org/10.3390/rs12183040.
Zare, M; Drastig, K; Zude-Sasse, M. (2019). Tree water status in apple orchards measured by means of land surface temperature and vegetation index (LST–NDVI) trapezoidal space derived from Landsat 8 satellite images. Sustainability, 12(1), 70. https://www.mdpi.com/2071-1050/12/1/70
Zhao, H; Li, Y; Chen, X; Wang, H; Yao, N; Liu F. (2021). Monitoring monthly soil moisture conditions in China with temperature vegetation dryness indexes based on an enhanced vegetation index and normalized difference vegetation index. Theoretical and Applied Climatology, 143, 159-176. https://link.springer.com/article/10.1007/s00704-020-03422-x
Zoneamento Ambiental Produtivo. (2018). ZAP da Bacia Hidrográfica do Ribeirão Santa Isabel. ZAP. https://www.paracaturural.com/zoneamento-ambiental-produtivo-no-santa-isabel/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Arthur Pereira dos Santos, Henzo Henrique Simionatto; Mayra Vanessa Lizcano Toledo; Liliane Moreira Nery, Darllan Collins da Cunha e Silva

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Proposed policy for journals offering Open Access
Authors publishing their works in the Journal acknowledge and agree to the following terms:
a) Authors retain the copyrights to their works and guarantee the Journal the right to be the first to publish their works, under the Creative Commons License Attribution-NonCommercial-ShareAlike 4.0 International, CC BY-NC-SA 4.0 International (https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es), which allows others to share works upon complying with the acknowledgment of authorship and mention of the Journal as the original publisher of the work.
b) Authors are permitted to separately establish additional agreements for the non-exclusive distribution of the official edition of the work published in the Journal (for example, authors may desire to place the work in an institutional repository or incorporate it into a book that is to published elsewhere) so long they acknowledgment to recognize the Journal as the original publisher. The aforementioned additional agreements must respect the terms of the non-profit character and sharing philosophy of the original license (CC BY-NC-SA 4.0 International, https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es).
c) Authors are encouraged to archive the post-print or editor/PDF version in Open Access repositories.