BASIC CONCEPTS IN GEODESY AS AN INPUT FOR ADEQUATE TREATMENT OF GEOSPATIAL INFORMATION

Authors

  • Jorge Moya-Zamora Universidad Nacional, Costa Rica
  • Bepsy Cedeño-Montoya Universidad Nacional, Costa Rica

DOI:

https://doi.org/10.15359/rgac.58-1.3

Keywords:

geodesy, reference system, reference frame, datum, projection, ITRF2014

Abstract

Geodesy as the science responsible for the study of the Earth including its shape, size, gravity field and representation has needed and currently needs modern systems and frames of reference that can link the information resulting from measurements made. It wants to show a series of fundamental concepts mainly linked with reference systems, reference frames, geodetic datum, types of coordinates and map projection in order to establish, without going into extensive mathematical derivations, a general basis of definitions that allow users and professional linked to other geosciences have a friendly reference. Special consideration on the Sistema Geocéntrico para las Américas (SIRGAS), its role and importance as the geodetic project of greater technical impact on Latinamerica is also done. Today Costa Rica has more than ten continuously operating GNSS stations duly integrated to SIRGAS, whose geocentric coordinates constitute the geodesic basis of greater accuracy of the country.

Author Biographies

Jorge Moya-Zamora, Universidad Nacional

Dr.-Ing. Centro Nacional de Procesamiento de Datos GNSS (CNPDG). Académico e investigador de la
Escuela de Topografía, Catastro y Geodesia. Universidad Nacional, Costa Rica. Correo electrónico: jorge.moya.zamora@una.cr

Bepsy Cedeño-Montoya, Universidad Nacional

Máster, Programa en Sistemas de Información Geográfca y Teledetección (PROSIGTE), Académica e
investigadora de la Escuela de Ciencias Geográfcas. Universidad Nacional, Costa Rica.  Correo electrónico: bepsy.cedeno.montoya@una.cr

References

Altamimi, Z., P. Sillard y C. Boucher. (2002). ITRF2000: A New release of the International Terrestrial Reference Frame for Earth Science Applications. Journal of Geophysical Research, 107(B10), 214. 1-19.

Badekas, J. (1969). Investigations related to the establishment of a world geodetic system. Report No. 124, Department of Geodetic Science, Ohio State University, Columbus, Ohio.

Bursa, M. (1962). The theory for the determination of the non-parallelism of the minor axis of the reference ellipsoid and the inertial polar axis of the earth, and the planes of the initial astronomic and geodetic meridians from observations of artificial earth satellite. Studia Geophysica et Geodetica, 6, 209-214.

Bretterbauer, K. (2002). Die runde Erde eben dargestellt Abbildungslehre und sphärische Kartennetzentwürfe. Instituto de Geodesia y Geofísica. Departamento de Geodesia Avanzada. Universidad Técnica de Viena, Austria. 106 pp.

Brunini, C. (2007). SIRGAS: Sistema de Referencia Geocéntrico para las Américas. La Plata, Argentina Simposio “IDE América: Conceptos, Prácticas y Proyectos” IPGH-IGAC, Bogotá.

Brunini, C. y Sánchez, L. (June, 2012). Geodetic activities in Latin America and The Caribbean: always IN. Coordinates, VIII, (6), 14-21.

Bruns, H. (1878). Die figure des Erde. Berlin: Editorial P. Stankiewicz,

Drewes, H. (Ed). (2009). Geodetic Reference Frames. International Association of Geodesy Symposium 134. Springer-Verlag Berlin Heidelberg. DOI 10.1007/978-3-642-00860-3_39

Deakin, R. (2006). A Note on the Bursa-Wolf and Molodensky-Badekas Transformations. School of Mathematical & Geospatial Sciences. RMIT University, Australia. En línea. Disponible en https://www.researchgate.net/publication/

GGOS. (2016). Global Geodetic Observing System. En línea. Disponible en: http://www.ggos.org/

Heiskanen, W. y Moritz, H. (1985). Geodesia Física. Instituto Geográfico Nacional de España, Instituto de Astronomía y Geodesia. Madrid, España. 371 pp.

Hoffmann-Weelenhof, B., Lichtenegger, H. y Wasle, E. (2008). GNSS Global Navigation Satellite Systems GPS, GLONASS, Galileo & more. Springer Wein, New York. Estados Unidos. 568 pp.

Hooijberg, M. (1998). Practical Geodesy Using Computer. Springer-Verlag Berlin, Alemania. 308 pp.

Hooijberg, M. (2008). Geometrical Geodesy Using Information and Computer Technology. Springer-Verlag Berlin. Alemania 438 pp.

IERS. (2016). International Earth Rotation Service. En línea. Disponible en: http://www.iers.org/

IAG-GGOS. (2016). International Association of Geodesy. On the Geodesy. En línea. Disponible en: http://www.iag-ggos.org

Jekeli, C. (2006). Geometric Reference System in Geodesy. Division of Geodesy and Geospatial Science. School of Earth Sciences. Ohio State University. 202 pp.

Leick, A. (2204). GPS Satellite Surveying. Editorial Wiley. Tercera Edición. Estados Unidos. 464 pp.

LGFS. (2016). Laboratorio de Geodesia Física y Satelital. Universidad del Zulia, Venezuela. En línea. Disponible en: http://www.lgfs.luz.edu.ve/

Lu, Z., Qu, Y. y Quiao, S. (2014). Geodesy Introduction to Geodetic Datum and Reference Systems. Springer Heidelberg New York Dordrecht London. DOI 10.1007/978-3-642-41245-5_5

Molodensky, M.S., Eremeev, V.F. y Yurkina, M. I. (1962). Methods for the Study of the External Gravitational Field and Figure of the Earth. Israeli Programme for the Translation of Scientific Publications, Jerusalem.

Moritz, H. (1979). Advanced Physical Geodesy. Wichmann. 500 pp.

NIMA. (2004). WGS84 definition/relationships with Geodetic Systems. Technical Report, No. 8350.2, National Imagery and Mapping Agency, Washington.

Rapp, R. (1991). Geometric Geodesy Part I. The Ohio State University. Department of Geodetic Science and Surveying. EE.UU. 189 pp.

Seeber, G. (2003). Satellite Geodesy. Walter de Gruyter-Berlin-New York. 589 pp.

SIRGAS. (2016). Sistema de Referencia Geocéntrico para las Américas (SIRGAS). En línea. Disponible en: http://www.sirgas.org

Torge, W. (1989). Gravimetry. Walter de Gruyter. Berlin, Alemania. 465 pp.

Torge, W. (2001). Geodesy. 3rd. Edition. Walter de Gruyter-Berlin-New York. 416 pp.

Wolf, H. (1963). Geometric connection and re-orientation of three-dimensional triangulation nets. Bulletin Geodesique, 68, 165-169.

Downloads

Published

2017-06-02

How to Cite

Moya-Zamora, J., & Cedeño-Montoya, B. (2017). BASIC CONCEPTS IN GEODESY AS AN INPUT FOR ADEQUATE TREATMENT OF GEOSPATIAL INFORMATION. Geographical Journal of Central America, 1(58), 71-100. https://doi.org/10.15359/rgac.58-1.3

Issue

Section

Theory, Epistemology, Methodology (Evaluated by peers)

How to Cite

Moya-Zamora, J., & Cedeño-Montoya, B. (2017). BASIC CONCEPTS IN GEODESY AS AN INPUT FOR ADEQUATE TREATMENT OF GEOSPATIAL INFORMATION. Geographical Journal of Central America, 1(58), 71-100. https://doi.org/10.15359/rgac.58-1.3

Most read articles by the same author(s)