Sismo de Capellades 01 diciembre 2016, Cartago, Costa Rica

Autores

  • Ronnie Quintero-Quintero, Doctor Universidad Nacional de Costa Rica, Costa Rica
  • Hernán Porras-Hernández, Máster Universidad Nacional de Costa Rica, Costa Rica

DOI:

https://doi.org/10.15359/rgac.61-4.6

Palavras-chave:

Costa Rica, Sismo Capellades, tensor de momento; réplicas

Resumo

In this work a seismic source description of the Capellades, Cartago province, Costa Rica earthquake, 2016-12-01 00:25:20 UTC time is made. We study the fault’s parameters, centroid, moment, magnitude, focal mechanism and aftershocks hypocenter with respective magnitudes. We also made a seismicity description in the epicentral zone before the Capellades earthquake occurred. The seismic network of the Observatorio Vulcanológico y Sismológico de Costa Rica de la Universidad Nacional (OVSICORI-UNA) and the Laboratorio de Ingeniería de la Universidad de Costa Rica (LIS-UCR) recorded the data used in the analysis. The main earthquake was located at 3.0 km depth, 3.7 km to the NNO of Capellades, with a magnitude (Mw) of 5.2. This earthquake was located between the Turrialba and Irazu volcanoes, Central Costa Rica Volcanic Arc. The moment tensor solution indicates a dextral strike-slip, almost vertical (dip 82°), strike 155° and slip 174°, with a centroid depth at 6 km. The pressure axis was calculated with a strike and dip of 21°/1°, with an SSO-NNE direction and the tension axis with strike and dip of 111°/10°, indicating a tension in the SEE-NOO direction. In general, the focal mechanism obtained using waveform inversion or P-wave first motion indicate a strike-slip fault, with horizontal pressure and tension axes in accordance with the stress of other moderate and light intraplate seismic events that have occurred in the central volcanic arc of Costa Rica. In 5 days of aftershock activity, in the area between 9.9 and 10.12 north latitude, 83.9 and 83.72 west longitude, 1923 earthquakes were located, all with magnitudes less than 4.0 degrees on the Richter scale. The aftershocks relocation shows an epicentral trend with NW-SE direction, dipping to the SW and rupture area of 32 km2. The strike 155° coincides with the tendency shown by the aftershocks epicenters, which indicates the fault trace. The Irazu-Turrialba zone where occurred the December 1, 2016 earthquake, showed microseismicity months and years before the main event; but there was no knowledge of earthquakes like this one, in the area.

Referências

Campos, D., Quintero, R. (2017). Mapa de Intensidades e implicaciones socioambientales del sismo de Capellades. Nov. 30, 2016; Costa Rica. I Congreso Centroaméricano de Ciencias de la Tierra y el Mar, 13 al 16 de Noviembre, 2017. San José, Costa Rica.

Bird, P. (2003). An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4(3), DOI:10.1029/2001GC000252.

Denyer, P., W. Montero, and G. E. Alvarado (2003). Atlas Tectónico de Costa Rica, Editorial Universidad de Costa Rica, serie Reportes Técnicos, Costa Rica.

De Mets, C. (2001). A New Estimate For Present-Day Cocos-Caribbean Plate Motion: Implications For Slip Along The Central American Volcanic Arc.- Geophys. Res. Letters, 28: 4043-4046.

De Mets, C., Gordon, R.G. & Argus, D.F. (2010). Geologically Current Plate Motions. Geophys. J. Int. 181: 1-80.

Fan, C., G. L. Pavlis, and K. Tuncay (2006). GCLGRID: A three-dimensional geographical curvilinear grid library for computational seismology.Computers in Geosciences, 32, pp. 371-381.

Fernández, M. Y Rojas, W. (2001). Amenaza sísmica y tsunamis en el territorio de Costa Rica. Libro conmemorativo del 30 aniversario de la Escuela Centroamericana de Geología. Editorial Universidad de Costa Rica, Universidad de Costa Rica.

GCMT (2018). Global CMT Catalog. Recuperado de: http://www.globalcmt.org/CMTsearch.html.

Havskov and Ottemoller (1999). SeisAn Earthquake analysis software. Seis. Res. Lett., 70, 1999.

Laboratorio de Ingenieria Sismica (2018). http://www.lis.ucr.ac.cr.

Lupi, M., Fuchs, F., and Pacheco, J. F. (2014). Fault reactivation due to the M7.6 Nicoya earthquake at the Turrialba‐Irazú volcanic complex, Costa Rica: Effects of dynamic stress triggering, Geophys. Res. Lett., 41, 4142–4148, doi: 10.1002/2014GL059942.

Marshall, J.S., Fisher, D.M. & Gardner, T.W. (2000). Central Costa Rica deformed belt: kinematics of diffuse faulting across the western Panama block, Tectonics, 19, 468–492.

Meschede, M., and Barckhausen, U. (2000). Plate tectonic evolution of the Cocos-Nazca spreading center. In Silver, E.A., Kimura, G., and Shipley, T.H. (Eds.), Proc. ODP, Sci. Results, 170: College Station, TX (Ocean Drilling Program), 1–10 [Online]. Available from World Wide Web: <http://wwwodp.tamu.edu/publications/170_SR/VOLUME/CHAPTERSSR170_07.PDF>. Último acceso 2018-05-20.

Montero, W. (1999). El Terremoto del 4 de Marzo de 1924 ( Ms 7.0); Un gran temblor interplaca relacionado al límite incipiente entre la placa Caribe y la microplaca de Panamá, Rev. Geol. Amer. Centr., 22, 25-62.

Moya, A. (2006). Nuevo Formato de datos para el Laboratorio de Ingenieria Sismica del Instituto de Investigaciones en Ingenieria de la Universidad de Costa Rica. Ingenieria. ISSN: 1409-2441 16 (2), 63e74. San Jose, Costa Rica.

Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (2018). https://www.facebook.com/OVSICORI/. Último acceso 20 mayo, 2018.

Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional (2018). http://www.ovsicori.una.ac.cr. Último acceso 19 de Mayo, 2018.

Protti, M., Güendel, F. and McNally, K. (1995). Correlation between the age of the subducting Cocos Plate and the geometry of the Wadati-Benioff zone under Nicaragua and Costa Rica. En: MANN, P. (ed.): Geologic and Tectonic development of the Caribbean plate boundary in southern Central America. Geol. Soc. Amer. Spec. Paper, 295: 309-326

Quintero, R., and E. Kissling (2001). An improved P-wave velocity reference model for Costa Rica. Geofís. Int., 40, 3 –19.

R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Rojas, W,. Lindholm, C. & Bungum, H. (1998). Seismic hazard analisis for the Metropolitan Area of the Central Valley, Costa Rica. Technical Report, NORSAR, Norway, 59p.

Segura, J. D., Quintero, R., Burgoa, R. B., Jiménez, U. W. (2014). Análisis de la actividad sísmica en Costa Rica durante el 2010 y resumen de los eventos sísmicos más importantes presentados en Costa Rica de 1983-2012. Revista Geográfica de América Central, Vol. 1, No 52, 2014.

Snoke, J.A., Munsey, J. W., Teague, A.G., Bollinger, G.A. (1984). A program for focal mechanism determination by combined use of polarity and SV-P amplitude data. Earthquake Notes, 55, #3, 15.

Sokos, E., Zahradník, J. (2008). ISOLA a Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data. Comput. Geosci. 34, 967e977. http://dx.doi.org/10.1016/j.cageo.2007.07.005.

Sokos, E., Zahradník, J. (2013). Evaluating centroid-moment tensor uncertainty in the new version of ISOLA software. Seis. Res. Lett. 84, 656e665. http://dx.doi.org/ 10.1785/0220130002.

Zahradník, J. and Plešinger, A. (2005). Long period pulses in broadband records of near eathquakes. Bull. Seismol. Soc. Ame. 95:1928-1939. https://doi.org/10.1785/0120040210.

Wessel, P. and Smith, W.H.F. (1995). New version of the generic mapping tools released. EOS 76, 329.

Publicado

2019-05-07

Como Citar

Quintero-Quintero, R., & Porras-Hernández, H. (2019). Sismo de Capellades 01 diciembre 2016, Cartago, Costa Rica. Revista Geográfica Da América Central, 4(61E), 123-143. https://doi.org/10.15359/rgac.61-4.6

Edição

Seção

Estudos de caso (revisado por pares)

Como Citar

Quintero-Quintero, R., & Porras-Hernández, H. (2019). Sismo de Capellades 01 diciembre 2016, Cartago, Costa Rica. Revista Geográfica Da América Central, 4(61E), 123-143. https://doi.org/10.15359/rgac.61-4.6