Effect of metal concentration on growth and luminescence of luminous bacteria strains isolated from golfo de Nicoya, Costa Rica

Authors

DOI:

https://doi.org/10.15359/revmar.13-1.2

Keywords:

Ecotoxicology, indicator species, luminous organisms, marine biotechnology, marine pollution

Abstract

Luminescence in bacteria is catalyzed by luciferase. When these microorganisms are exposed to toxic substances, the bioluminescent enzyme system can be inhibited. The objective of this study was to analyze the potential that these microorganisms offer as native bioindicators of coastal marine pollution. The dynamics of luminescence intensity by visual classification and the effect of metal concentration on the growth and luminescence of 25 strains of luminescent bacteria, isolated during 2016 from seawater samples from the gulf of Nicoya, Costa Rica, was evaluated by the disk diffusion method. The sensitivity of each strain to different concentrations (0.1, 0.5 and 1 mg mL-1) of Cd, Cu, Cr, Pb and Zn was determined by its bioluminescent phenotype. In susceptible strains, a range of metal concentrations less than the growth inhibitory concentration affected the expression of luminescence. Strains with intense luminescence and defined zones of luminescence inhibition were considered to have greater potential as native bioindicators for monitoring environmental toxicity. More studies are required to determine the minimum concentrations that inhibit growth and luminescence with respect to the tested metals and other potentially toxic substances for the coastal marine ecosystems of Costa Rica.

Author Biographies

Luis Vega-Corrales, Universidad Nacional

Laboratorio de Microbiología Marina (LaMMar), Estación de Biología Marina Juan Bertoglia Richards, Escuela de Ciencias Biológicas, Puntarenas

Carolina Marín-Vindas, Universidad Nacional

Laboratorio de Microbiología Marina (LaMMar), Estación de Biología Marina Juan Bertoglia Richards, Escuela de Ciencias Biológicas, Universidad Nacional, Puntarenas, Costa Rica. Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, Spain.

References

Bagordo, F., Serio, F., Lugoli, F., Idolo, A., Gabutti, G. & De Donno, A. (2012). Phenotypic characterization of culturable marine luminous bacteria isolated from coastal waters of the southern Adriatic Sea (Otranto, Italy). Cienc. Mar., 38(4), 599-608. https://doi.org/10.7773/cm.v38i4.2119

Bolelli, L., Ferri, E. N.& Girotti, S. (2016). The management and exploitation of naturally light-emitting bacteria as a flexible analytical tool: A tutorial. Analytica Chimica Acta., 934, 22-35. https://doi.org/10.1016/j.aca.2016.05.038

Burga, K. F., Charlatchka, R., Sahli, L. & Férard, J. (2012). New methodological improvements in the Microtox® solid phase assay. Chemosphere., 86, 105-110. https://doi.org/10.1016/j.chemosphere.2011.08.042

Camanzi, L., Bolelli, M., Girotti, S. & Matteuzzi, D. (2011). Optimal conditions for stability of photoemission and freeze drying of two luminescent bacteria use in a biosensor. Environ. Toxicol. Chem., 30(4), 801-805. https://doi.org/10.1002/etc.452

Diepens, N. J., Pfenning, S., Van den Brink, P. J., Gunnarsson, J. S., Ruepert, C. & Castillo, L. E. (2014). Effect of pesticides used in banana and pineapple plantations on aquatic ecosystems in Costa Rica. J. Environ. Biol., 35(1), 73-84.

Drozdov, A. V., Gromozova, E. N. & Gretsky, I. A. (2015). An analysis of the bioluminescence intensity dynamics of the luminous bacteria. Photobact phosph. Biophys., 60(2), 251-255. https://doi.org/10.1134/S0006350915020050

Dunlap, P. V. & Urbanczyk, H. (2013). Luminous Bacteria. In E., Rosenberg E.F., DeLong S., Lory E. Stackebrandt & F. Thompson (Eds), The Prokaryotes. (4th, pp. 495-528). Springer, Germany. https://doi.org/10.1007/978-3-642-30141-4_75

Efremenko, E. N., Senko, O. V., Aleskerova, L. E., Alenina, K. A., Mazhul, M. M. & Ismailov, A. D. (2014). Biosensors based in luminous bacteria Photobacterium phosphoreum imobilized in polyvinil alcohol cryogel for the monitoring of ecotoxicants. Applied Biochem. Microbiol., 50(5), 477-482. https://doi.org/10.1134/S0003683814050032

Jabalameli, L., Razavi, M. R., Hosseinkhani, S. & Akhavan Sepahi, A. (2015). Isolation, identification and characterization of new luminous bacteria from Chah Bahar Port, southern marine habitat of Iran. Iranian J. Fish. Sci., 14(3), 555-566.

Kumar, A. R., Jayaprakashvel, M., FeuK-Lagerstedt, E. & Hussain, A. J. (2015). Factors affecting bioluminescence in free living Photobacterium spp. Isolated from Bay of Bengal, India. J. Mar. Biosci., 1(1), 33-49.

Ma, X. Y., Wang, X. C., Hao, H., Guo, W., Wu, M. N. & Wang, N. (2014). Bioassay based luminescent bacteria: interferences, improvements, and applications. Sci. Total Environ., 468-469, 1-11. https://doi.org/10.1016/j.scitotenv.2013.08.028

Martini, S., Al Ali, B., Garel, M., Nerini, D., Grossi, V., Pacton, M., & Tamburini, C. (2013). Effects of hydrostatic pressure on growth and luminescence of a moderately-piezophilic luminous bacteria Photobacterium phosphoreum ANT-2200. PLoS One, 8(6), e66580. https://doi.org/10.1371/journal.pone.0066580

Menz, J., Schneider, M. & Kümmerer, K. (2013). Toxicity testing with luminescent bacteria- Characterization of an automated method for the combined assessment of acute and chronic effects. Chemosphere., 93(6), 990-996. https://doi.org/10.1016/j.chemosphere.2013.05.067

R Core Team. (2018). R: a language and environment for statistical computing. Austria: R Foundation for Statistical Computing. https://www.R-project.org/

Ranjan, R., Rastogi, N. K. & Thakur, M. S. (2012). Development of immobilized biophotonic beads consisting of Photobacterium leiognathi for the detection of heavy metals and pesticide. J. Hazardous Mat., 225-226, 114-123. https://doi.org/10.1016/j.jhazmat.2012.04.076

Shanware, A., Thakre, N. & Pande, S. (2013). Isolation and characterization of novel marine luminescent bacteria from Diu beach, India. J. Pharm. Res., 7(6), 529-533. https://doi.org/10.1016/j.jopr.2013.05.019

Urbanczyk, Y., Ogura, Y., Hayashi, T. & Urbanczyk, H. (2015). Description of a novel marine bacterium, Vibrio hyugaensis sp. nov., based on genomic and phenotypic characterization. System. Applied Microbiol., 38, 300-304. https://doi.org/10.1016/j.syapm.2015.04.001

Yu, X., Zuo, J., Tang, X., Li, R., Li, Z. & Zhang, F. (2014). Toxicity evaluation of pharmaceutical wastewaters using the alga Scenedesmus obliquus and the bacterium Vibrio fischeri. J. Hazarduos Mat., 266, 68-74. https://doi.org/10.1016/j.jhazmat.2013.12.012

Published

2021-04-23

How to Cite

Vega-Corrales, L., & Marín-Vindas, C. (2021). Effect of metal concentration on growth and luminescence of luminous bacteria strains isolated from golfo de Nicoya, Costa Rica. Revista Ciencias Marinas Y Costeras, 13(1), 27-38. https://doi.org/10.15359/revmar.13-1.2

Issue

Section

Scientific articles

How to Cite

Vega-Corrales, L., & Marín-Vindas, C. (2021). Effect of metal concentration on growth and luminescence of luminous bacteria strains isolated from golfo de Nicoya, Costa Rica. Revista Ciencias Marinas Y Costeras, 13(1), 27-38. https://doi.org/10.15359/revmar.13-1.2

Comentarios (ver términos de uso)