Antioxidant capacity of lactic acid bacteria isolated from marine fish and invertebrates of the province of Chubut, Patagonia, Argentina
DOI:
https://doi.org/10.15359/revmar.15-1.6Keywords:
Antioxidant activity, functional foods, Enterococcus, Lactococcus, marine environmentAbstract
The antioxidant activity of lactic acid bacteria (LAB) has been studied in depth in strains isolated from terrestrial organisms and fermented or unprocessed foods; however, information on isolates of marine origin is still being determined. This feature is of particular interest due to its potential use in functional foods in this work. The antioxidant capacity of 16 bacteriocinogenic LAB isolated from marine organisms from the Chubut coast (2010-2022 period) was studied with in vivo and in vitro assays. The in vitro antioxidant capacity was assessed by reduction of 2,2-diphenyl-1-picrylhydrazyl (DPPH), cupric ion-reducing antioxidant capacity (CUPRAC), and hydroxyl radical scavenging in unlysed cells. Saccharomyces cerevisiae was used as a eukaryotic biological model to evaluate the protective effect in vivo. The antioxidant capacity results from the DPPH radical scavenging test exhibited values between 15-37.5%, while hydroxyl radical scavenging showed values between 13.3-61.9%, and, for the CUPRAC method, values varied between 0.223-0.551, equivalent to mmol of ascorbic acid per ml of cellular suspension. The LAB protective effect on the survival rate of S. cerevisiae displayed results between 36-90%. No relationship was established between the values obtained with the different methods or between members of the same genus or species; consequently, the antioxidant behavior could be considered strain-depend. Results suggest that the antioxidant capacity of bacteriocinogenic LAB of marine origin can be used as a metabolic selection trait with biotechnological potential in the development of functional foods.
References
Annuziata, A. & Vecchio, R. (2013). Consumer perception of functional foods: A conjoint analysis with probiotics. Food Qual. Prefer., 28(1), 348-355. https://doi.org/https://doi.org/10.1016/j.foodqual.2012.10.009
Apak, R., Güçlü, K., Özyürek, M. & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC Method. J. Agric. Food Chem., 52, 7970-7981. https://doi.org/10.1021/jf048741x
Bhagwat, A. & Annapure, U. S. (2019). In vitro assessment of metabolic profile of Enterococcus strains of human origin. J. Genet. Eng. Biotechnol., 17(11), 1-11. https://doi.org/https://doi.org/10.1186/s43141-019-0009-0
Dionisi, H., Lozada, M. & Olivera, N. (2012). Bioprospection of marine microorganisms biotechnological applications and methods. Rev. Argent. Microbiol., 44, 49-60.
Feng, J., Cai, Z., Chen, Y., Zhu, H., Chang, X., Wang, X. & Nie, G. (2020). Effects of an exopolysaccharide from Lactococcus lactis Z-2 on innate immune response, antioxidant activity, and disease resistance against Aeromonas hydrophila in Cyprinus carpio L. Fish Shellfish Immunol., 98, 324-333. https://doi.org/10.1016/j.fsi.2020.01.037
Gianni de Carvalho, K., Gómez, J., Vallejo, M., Marguet, E., Peroti, N., Donato, M., … & Colin, V. (2019). Production and properties of a bioemulsifier obtained from a lactic acid bacterium. Ecotoxicol. Environ. Saf., 183, 1-8. https://doi.org/10.1016/j.ecoenv.2019.109553
Granato, D., Barba, F., Bursać-kovačević, D., Lorenzo, J., Cruz, A. & Putnik, P. (2020). Annual Review of Food Science and Technology Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annu Rev Food Sci Technol, 11(3), 93-118. https://doi.org/10.1146/annurev-food-032519-051708
Kim, S., Jeon, H., Han, H. & Hur, J. (2021). Evaluation of Bacillus albus SMH-1 and B. safensis SMG-2 isolated from Saemangeum Lake as probiotics for aquaculture of white shrimp (Litopenaeus vannamei). Aquac. Rep., 20, 1-9. https://doi.org/10.1016/j.aqrep.2021.100743
Kuda, T., Kawahara, M., Nemoto, M., Takahashi, H. & Kimura, B. (2014). In vitro antioxidant and anti-inflammation properties of lactic acid bacteria isolated from fish intestines and fermented fish from the Sanriku Satoumi region in Japan. Food Res. Int., 64, 248-255. https://doi.org/10.1016/j.foodres.2014.06.028
Lara, V., Vallejo, M., Parada, R., Henao Ossa, J., Gliemmo, M. & Campos, C. (2020). Characterization of the emulsifying activity of biosurfactants produced by lactic acid bacteria isolated from the Argentinian Patagonia. J. Dispers. Sci. Technol., 46(6), 902-909. https://doi.org/10.1080/01932691.2020.1845961
Łepecka, A., Szymański, P., Okoń, A., Zielińska, D. (2023). Antioxidant activity of environmental lactic acid bacteria strains isolated from organic raw fermented meat products. LWT - Food Sci. Technol., 174, 1-7. https://doi.org/10.1016/j.lwt.2023.114440
Lin, X., Xia, Y., Wang, G., Yang, Y., Xiong, Z., Lv, F. & Ai, L. (2018). Lactic acid bacteria with antioxidant activities alleviating oxidized oil induced hepatic injury in mice. Front. Microbiol., 9, 1-10. https://doi.org/10.3389/fmicb.2018.02684
Marguet, E., Vallejo, M., Chichisola, V. & Quispe, J. (2011). Actividad antagonista de bacterias lácticas aisladas del medio marino contra cepas de Listeria. Acta Bioquim. Clin. Latinoam., 45(2), 305-310.
Mrvčić, J., Stanzer, D., Šolić, E. & Stehlik-Tomas, V. (2012). Interaction of lactic acid bacteria with metal ions: Opportunities for improving food safety and quality. World J. Microbiol. Biotechnol., 28(9), 2771-2782. https://doi.org/10.1007/s11274-012-1094-2
Mu, G., Li, H., Tuo, Y., Gao, Y. & Zhang, Y. (2019). Antioxidative effect of Lactobacillus plantarum Y44 on 2,2′-azobis(2-methylpropionamidine) dihydrochloride (ABAP)-damaged Caco-2 cells. J. Dairy Sci., 102(8), 6863-6875. https://doi.org/10.3168/jds.2019-16447
Özyürek, M., Güçlü, K. & Apak, R. (2011). The main and modified CUPRAC methods of antioxidant measurement. Trends Analyt. Chem., 30(4), 652-664. https://doi.org/10.1016/j.trac.2010.11.016
Rezaei, M., Noori, N., Shariatifar, N., Gandomi, H., Akhondzadeh Basti, A. & Mousavi Khaneghah, A. (2020). Isolation of lactic acid probiotic strains from Iranian camel milk. Food Sci. Technol., 132, 1-8. https://doi.org/10.1016/j.lwt.2020.109823
Schelegueda, L. I., Vallejo, M., Gliemmo, M. F., Marguet, E. R. & Campos, C. A. (2015). Synergistic antimicrobial action and potential application for fish preservation of a bacteriocin produced by Enterococcus mundtii isolated from Odontesthes platensis. LWT - Food Sci. Technol., 64, 794-801. https://doi.org/10.1016/j.lwt.2015.06.017
Sequeiros, C., Vallejo, M., Marguet, E. R. & Olivera, N. L. (2010). Inhibitory activity against the fish pathogen Lactococcus lactis TW34, a lactic acid bacterium isolated from the intestinal tract of a Patagonian fish. Arch. Microbiol., 192, 237-245. https://doi.org/10.1007/s00203-010-0552-1
Shahidi, F. & Zhong, Y. (2015). Measurement of antioxidant activity. J. Funct. Foods, 18, 757-781. https://doi.org/10.1016/j.jff.2015.01.047
Sosa, F. M., Parada, R. B., Marguet, E. R. & Vallejo, M. (2022). Utilization of agro-industrial byproducts for bacteriocin production using Enterococcus spp. strains isolated from patagonian marine invertebrates. Curr. Microbiol., 79, 1-12. https://doi.org/10.1007/s00284-021-02712-5
StatPoint Technologies, Inc. (2006). Statgraphics centurion XV user manual. The Plains, VA: StatPoint Technologies, Inc. https://www.statgraphics.com/
Vallejo, M., Olivera, N., Sequeiros, C. & Marguet, E. (2009). Actividad antilisteria de bacterias ácido lácticas aisladas de peces marinos. Analect. Vet., 29(2), 19-23.
Wen, X., Wu, J., Wang, F., Liu, B., Huang, C. & Wei, Y. (2013). Deconvoluting the role of reactive oxygen species and autophagy in human diseases. Free Radic. Biol. Med., 65, 402-410. https://doi.org/10.1016/j.freeradbiomed.2013.07.013
Zhang, L., Liu, C., Li, D., Zhao, Y., Zeng, X., Yang, Z.& Li, S. (2013). Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int. J. Biol. Macromol., 54, 270-275. https://doi.org/10.1016/j.ijbiomac.2012.12.037
Zhang, Y., Chen, X., Hu, P., Liao, Q., Luo, Y., Li, J., Feng, D., … & Xu, H. (2021). Extraction, purification, and antioxidant activity of exopolysaccharides produced by Lactobacillus kimchi SR8 from sour meat in vitro and in vivo. Cy T A - J. Food, 19(1), 228-237. https://doi.org/10.1080/19476337.2021.1883117
Downloads
Published
How to Cite
Issue
Section
License
General terms and conditions
Revista Ciencias Marinas y Costeras by Universidad Nacional is located under a Licencia Creative Commons Atribución-NoComercial-SinDerivadas 3.0 Costa Rica.
The journal is hosted in open-access repositories such as the Repositorio Institucional de la Universidad Nacional, the Repositorio Kimuk de Costa Rica and la Referencia.
The editorial source of the journal must be acknowledged. For this purpose, use the doi identifier of the publication.
Self-archiving policy: The journal allows the self-archiving of articles in their refereed version, edited and approved by the Editorial Board of the Journal so that they are available in Open Access through the Internet. More information at the following link: https://v2.sherpa.ac.uk/id/publication/28915