Influence of xenobiotics on the luminescence of Vibrio harveyi strains isolated from Cuban marine waters

Authors

DOI:

https://doi.org/10.15359/revmar.16-2.2

Keywords:

bacteria, biological assay, contamination, luminescence, xenobiotics

Abstract

Toxicity tests using luminescent bacteria are promising tools to assess the quality of aquatic environments given the high sensitivity of these bacteria to pollutants. The research evaluated the effect of different types of xenobiotics—salts of mercury, copper, chromium, silver, iron, and four pesticides—on the luminescence of Vibrio harveyi strains CBM-784, CBM-976, and CBM-992, isolated from waters of the Cuban platform. The selected strains showed a reduction in luminescent emission at 15 min of exposure to the tested compounds, with a consistent, decreasing sequence of toxicity for all three strains as follows: HgCl2 > CuSO4 ≈ Cuproflow > K2Cr2O7 > Sphere Max ≈ Kospi-sc 130 > AgNO3 > Fe2(SO4)3 > Envidor. Results suggest that these cultures could be used to design a contamination biosensor since luminescence responds to nanomolar concentrations of the tested toxicants.

Author Biographies

Gladys Margarita Lugioyo Gallardo, Instituto de Ciencias del Mar de Cuba

Instituto de Ciencias del Mar (ICIMAR), calle Loma #14, entre 35 y 37, Plaza de la Revolución, La Habana, Cuba

María Victoria Iglesias Rodríguez, Instituto de Ciencias del Mar de Cuba

Instituto de Ciencias del Mar (ICIMAR), calle Loma #14, entre 35 y 37, Plaza de la Revolución, La Habana, Cuba

Ayamey Pérez Oduardo, Instituto de Ciencias del Mar de Cuba

Instituto de Ciencias del Mar (ICIMAR), calle Loma #14, entre 35 y 37, Plaza de la Revolución, La Habana, Cuba.

Eudalys Ortiz Guilarte, Instituto de Ciencias del Mar de Cuba

Instituto de Ciencias del Mar (ICIMAR), calle Loma #14, entre 35 y 37, Plaza de la Revolución, La Habana, Cuba.

Roberto Núñez Moreira, Instituto de Ciencias del Mar de Cuba

Instituto de Ciencias del Mar (ICIMAR), calle Loma #14, entre 35 y 37, Plaza de la Revolución, La Habana, Cuba.

Thais Renee Chong Almaguer, Instituto de Ciencias del Mar de Cuba

Instituto de Ciencias del Mar (ICIMAR), calle Loma #14, entre 35 y 37, Plaza de la Revolución, La Habana, Cuba.

Carlos Álvarez Valcárcel, Universidad de La Habana

Centro de Estudios de Proteínas (CEP), Facultad de Biología, Universidad de La Habana, calle 25 entre J e I, Plaza de la Revolución, La Habana, Cuba.

References

Axelrod, T., Eltzov, E. & Marks, R. S. (2016). Bioluminescent bioreporter pad biosensor for monitoring water toxicity. Talanta 149, 290-297. https://doi.org/10.1016/j.talanta.2015.11.067

Ayangbenro, A. S. & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. Int. J. Environ. Res. Public Health, 14(94), 1-16. https://doi.org/10.3390/ijerph14010094

Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R. & Sadeghi, M. (2021). Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol., 13(13), 643972. https://doi.org/10.3389/fphar.2021.643972

Baumann, P. & Baumann, L. (1981). The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, & Alcaligenes. The Prokaryotes. A handbook on habitats, isolation, & identification of bacteria. Berlin. Springer-Verlag.

Braun, V. & Hantke, K. (2007). Acquisition of Iron by Bacteria. En D. H. Nies, S. Silver (Eds.), Molecular Microbiology of Heavy Metals (pp. 189-219). Berlin: Springer.

Beh, W. C., Lim, Y. K., Asmat, A., Lee, Y. H. & Salmijah, S. (2010). The potential of luminescent Bacteria “Photobacterium leiognathi” as biosensor for the detection of aquatic toxicity. Environ. Nat. Res. J., 8(3), 1-9.

Bolelli, L., Ferri, E. N. & Girotti, S. (2016). The management and exploitation of naturally light-emitting bacteria as a flexible analytical tool: A tutorial. Anal. Chim. Acta., 934, 22-35. https://doi.org/10.1016/j.aca.2016.05.038

Boynton, L. (2009). Using bioluminescent bacteria to detect water contaminants. J. U.S. SJWP., 4, 29-41.

Camanzi, L., Bolelli, M., Maiolini, E., Girotti, S. & Matteuzzi, D. (2011). Optimal conditions for stability of photoemission and freeze drying of two luminescent bacteria use in a biosensor. Environ. Toxicol. Chem., 30(4), 801-805. https://doi.org/10.1002/etc.452

Chen, B. & Dong, S. (2022). Mercury Contamination in Fish and Its Effects on the Health of Pregnant Women and Their Fetuses, and Guidance for Fish Consumption-A Narrative Review. Int. J. Environ. Res. Public Health, 19(23), 15929. https://doi.org/10.3390/ijerph192315929

Cho, J.-C., Park, K.-J., Ihmb, H.-S., Park, J.-E., Kim, S.-Y., Kang, I., … & Kim, S.-J. (2004). A novel continuous toxicity test system using a luminously modified freshwater bacterium. Biosens Bioelectron., 20(2), 338-44. https://doi.org/10.1016/j.bios.2004.02.001

Coutiño-Rodríguez, E. Md. R. & Pérez-Gutiérrez, R. A. (2007). Los compuestos de plata y la salud. Salud Comunidad, 3(5), 29-38.

de Carvalho, C. C. C. R. & Fernandes, P. (2010). Production of metabolites as bacterial responses to the marine environment. Mar. Drugs., 8(3), 705-727. https://doi.org/10.3390/md8030705

de la Gala Morales, M. (2014). Desarrollo y aplicación de nuevas tecnologías analíticas para la determinación de contaminantes ambientales (metales pesados y benzo(a)pireno). (Tesis de doctorado no publicada), Universidad de Extremadura, España.

Dupont, C. L., Grass, G. & Rensing, C. (2011). Copper toxicity and the origin of bacterial resistance-new insights and applications. Metallomics, 3(11), 1109-1118. https://doi.org/10.1039/c1mt00107h

Excel. (2018). Microsoft Corporation. Microsoft Excel. https://office.microsoft.com/excel

Fang, Z., Zhao, M., Zhen, H., Chen, L., Shi, P. & Huang, Z. (2014). Genotoxicity of Tri- and hexavalent Chromium compounds In Vivo and their modes of action on DNA damage In Vitro. PLoS One., 9(8), e103194. https://doi.org/10.1371/journal.pone.0103194

Fernández-Piñas, F., Rodea-Palomares, I., Leganés, F., González-Pleiter, M. & Muñoz-Martín, M. A. (2014). Evaluation of the Ecotoxicity of Pollutants with Bioluminescent Microorganisms. Adv. Biochem. Eng. Biotechnol., (2)145, 65-135. https://doi.org/10.1007/978-3-662-43619-6_3

Futra, D., Heng, L. Y., Surif, S., Ahmad, A. & Ling, T. L. (2014). Microencapsulated Aliivibrio fischeri in alginate microspheres for monitoring heavy metal toxicity in environmental waters. Sensors, 14, 23248-23268. https://doi.org/10.3390/s141223248

Gaetke, L. M. & Chow, C. K. (2003). Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicol., 189(1-2), 147-163. https://doi.org/10.1016/S0300-483X(03)00159-8

Girotti, S., Bolelli, L., Ferri, E., Carpené, E. & Isani, G. (2015). Bioindicators in enviromental monitoring: bioluminiscen bacteria, algae and honeybees. Paper presented at the International Conference on Environmental Science and Technology, Greece.

González-Marín, B., Calderón-Segura, M. E. & Sekelsky, J. (2023). Atm/Chk2 and atr/Chk1 pathways respond to dna damage induced by Movento® 240SC and Envidor® 240SC Keto-Enol Insecticides in the Germarium of Drosophila melanogaster. Toxics, 11(9), 754. https://doi.org/10.3390/toxics11090754

Grass, G. (2007). New transport deals for old Iron. In D. H. Nies & S. Silver. (Eds.), Molecular Microbiology of Heavy Metals. Microbiology Monographs (pp. 221-233). Berlin: Springer. https://doi.org/10.1007/7171_2006_079

Gutiérrez-Corona, J. F., Espino-Saldaña, A. E., Coreño-Alonso, A., Reyna-López, G. E., Acevedo-Aguilar, F. J., Fernández, F. J., ... & Wrobel, K. (2010). Interacciones microbianas con el cromo: mecanismos y potencial biotecnológico. Rev. Latinoamb. Biotecnol Algal., 1(1), 47-63.

Halmi, M. I. E., Kassim, A. & Shukor, M. Y. (2019). Assessment of heavy metal toxicity using a luminescent bacterial test based on Photobacterium sp. strain MIE. Rend. Fis. Acc. Lincei, 30(3), 589-601. https://doi.org/10.1007/s12210-019-00809-5

Hong, G., Antaris, A. L. & Dai, H. (2017). Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng., 1, 0010. https://doi.org/10.1038/s41551-016-0010

Jan, A. T., Azam, M., Choi, I., Ali, A. & Haq, Q. M. R. (2016). Analysis for the presence of determinants involved in the transport of mercury across bacterial membrane from polluted water bodies of India. Braz. J. Microbiol., 47(1), 55-62. https://doi.org/10.1016/j.bjm.2015.11.023

Kirsop, B. E. & Doyle, A. (Eds.). (1991). Maintenance of Microorganisms and Cultured Cells: a Manual of Laboratory Methods. 2nd Edition. EE. UU.: Academic Press.

Kurbatska, O. & Orobchenko, O. (2022). Toxicological evaluation of feeds with different levels of heavy metals using luminescent microorganisms Photobacterium рhosphoreum. Scien. Mess. LNU Vet. Med. Biotech. Ser.: Vet. Sci., 24(106), 158-167. https://doi.org/10.32718/nvlvet10624

Lerch, G. (1977). La experimentación en las Ciencias Biológicas y Agrícolas. Cuba.: Editorial Científico Técnica.

Liu, Y.-R., Lu, X., Zhao, L., Jing, A., He, J.-Z., Pierce, E. M., … & Gu, B. (2016). Effects of cellular sorption on mercury bioavailability and methylmercury production by desulfovibrio desulfuricans ND132. Environ. Sci. Technol., 50(24), 13335-13341. https://doi.org/10.1021/acs.est.6b04041

López-Roldan, R., Kazlauskaite, L., Ribo, J., Riva, M. C., González, S. & Cortina, J. L. (2012). Evaluation of an automated luminescent bacteria assay for in situ aquatic toxicity determination. Sci. Total. Environ., 440, 307-313. https://doi.org/10.1016/j.scitotenv.2012.05.043

Mackenzie, E. L., Iwasaki, K. & Tsuji, Y. (2008). Intracellular iron transport and storage: From molecular mechanisms to health implications. Antioxid. Redox. Signal., 10(6), 997-1030. https://doi.org/10.1089/ars.2007.1893

Macomber, L. & Imlay, J. A. (2009). The iron-sulfur clusters of dehydratases are Primary intracelular targets of copper toxicity. Proc. Natl. Acad. Sci. U.S.A., 106, 8344-8349. https://doi:10.1073/pnas.0812808106

Mahendran, G., Savitha, T., Khalifa, A. Y., Sharmae, A. & Sankaranarayanane, A. (2022). Evaluation of environment by microbial sensors. In P. Verma & M. P. Shah (Eds.), Bioprospecting of Microbial Diversity (pp. 407-424). EE. UU.: Elsevier. https://doi.org/10.1016/B978-0-323-90958-7.00010-8

Marrero, K. & Fando, R. (2009). Sistemas de homeostasis del cobre en las bacterias Gram negativas Escherichia coli y Vibrio cholerae. Rev. CENIC Cienc. Biol., 40(3), 186-198.

Martín, A., Serrano, S., Santos, A., Marquina, D. & Vázquez, C. (2010). Bioluminiscencia bacteriana. Reduca (Biología). Ser. Microbiol., 3(5), 75-86.

Muneeswaran, T., Kalyanaraman, N., Vennila, T., Rajesh Kannan, M. & Ramakritinan, C. M. (2021). Rapid assessment of heavy metal toxicity using bioluminescent bacteria Photobacterium leiognathi strain GoMGm1. Environ. Monit. Assess., 193(3), 109. https://doi.org/10.1007/s10661-021-08860-2

OriginPro. (2024). OriginLab Corporation. EE. UU. https://www.originlab.com

Park, J., Shin, K., Lee, H., Choi, S., Kim, G., Depuydt, S., ... & Han, T. (2023). Evaluating ecotoxicological assays for comprehensive risk assessment of toxic metals present in industrial wastewaters in the Republic of Korea. Sci. Total Environ., 1(867), 161536. https://doi.org/10.1016/j.scitotenv.2023.161536

Parvez, S., Venkataraman, C. & Mukherji, S. (2006). A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ. Int., 32(2), 265-268. https://doi.org/10.1016/j.envint.2005.08.022

Perego, P., Fanara, L., Zilli, M. & Borghi, M. D. (2002). Applications of luminous bacteria on environmental monitoring. Chem. Biochem. Eng. Q., 16(2), 87-92.

Ramteke, P. W., Sagar, A. & Singh, M. P. (2019). Assessment of Wastewater Toxicity by Vibrio fischeri Bioassay. Int. J. Ecol. Env. Sci., 45(1), 15-17.

Sáenz, C. I. & Nevárez, G. V. (2010). La bioluminiscencia de microorganismos marinos y su potencial biotecnológico. Acta Quim. Mex., 2(3), 1-7.

Schaefer, J. K., Szczuka, A. & Morel, F. M. M. (2014). Effect of divalent metals on Hg(II) uptake and methylation by bacteria. Environ. Sci. Technol., 48(5), 3007-30013. https://doi.org/10.1021/es405215v

Tanet, L., Tamburini, C., Baumas, C., Garel, M., Simon, G. & Casalot, L. (2019). Bacterial Bioluminescence: Light Emission in Photobacterium phosphoreum Is Not Under Quorum-Sensing Control. Front. Microbiol., 10(365), 1-9. https://doi.org/10.3389/fmicb.2019.00365

Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K. & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Exp. Suppl., 101, 133-64. https://doi.org/10.1007/978-3-7643-8340-4_6

van der Meer, J. R. & Belkin, S. (2010). Where microbiology meets microengineering: design and applications of reporter bacteria. Nat. Rev. Microbiol., 8(7), 511-22. https://doi.org/10.1038/nrmicro2392

Vega-Corrales, L. & Marín-Vindas C. (2021). Effect of metal concentration on growth and luminescence of luminous bacteria strains isolated from golfo de Nicoya, Costa Rica. Rev. Mar. Cost., 13(1), 27-38. http://dx.doi.org/10.15359/revmar.13-1.2

Vishnivetskaya, T. A., Mosher, J. J., Palumbo, A. V., Yang, Z. K., Podar, M., Brown, S. D., Brooks, S. C., ... & Elias, D. A. (2011). Mercury and other heavy metals influence bacterial community structure in contaminated tennessee streams. Appl. Environ. Microbiol., 77(1), 302-311. http://dx.doi.org/10.1128/AEM.01715-10

Wang, Z., Cong, T. D., Zhong, W., Lau, J. W., Kwek, G., … & Xing, B. (2021). Cyanine-Dyad Molecular Probe for the Simultaneous Profiling of the Evolution of Multiple Radical Species During Bacterial Infections. Angew. Chem. Int. Ed., 60, 16900-16905. https://doi.org/10.1002/anie.202104100

Westrich, J. R. (2015). Consilience of iron in the ecology of vibrio bacteria. (Tesis de Doctorado no publicada), Universidad de Creighton, Georgia.

Wie, M.-A., Oh, S.-J., Kim, S.-C., Kim, R.-Y., Lee, S.-P., Kim, W.-I. & Yang, J.-E. (2012). Toxicity assessment of silver ions compared to silver nanoparticles in aqueous solutions and soils using microtox bioassay. Korean J. Soil Sci. Fert., 45(6), 1114-1119. http://dx.doi.org/10.7745/KJSSF.2012.45.6.1114

Yang, J., Hu, S., Liao, A., Weng, Y., Liang, S. & Ling., Y. (2022). Preparation of freeze-dried bioluminescent bacteria and their application in the detection of acute toxicity of bisphenol A and heavy metals. Food Sci. Nutr., 10(6), 1841-1853. https://doi.org/10.1002/fsn3.2800

Yang, M., Li, J. & Wu, H. (2023). Toxicity evaluation of chlorinated natural water using Photobacterium phosphoreum: Implications for ballast water management. J. Environ. Manage., (335), 11747. https://doi.org/10.1016/j.jenvman.2023.117471

Zarubina, A. P., Deev, L. I., Parkhomenko, I. M., Parshina, E. Y., Sarycheva, A. S., Novoselova, L. A., Lukashev, E. P., … & Rubin, A. B. (2015). Evaluation of toxicity of silver ions and nanoparticles using model bacteria with luminescent phenotype. Nanotechnol. Russi., 10, 475-483. https://doi.org/10.1134/S1995078015030209

Published

2024-09-12

How to Cite

Lugioyo Gallardo, G. M., Iglesias Rodríguez, M. V., Pérez Oduardo, A., Ortiz Guilarte, E., Núñez Moreira, R., Chong Almaguer, T. R., & Álvarez Valcárcel, C. (2024). Influence of xenobiotics on the luminescence of Vibrio harveyi strains isolated from Cuban marine waters. Revista Ciencias Marinas Y Costeras, 16(2), 29-49. https://doi.org/10.15359/revmar.16-2.2

Issue

Section

Scientific articles

How to Cite

Lugioyo Gallardo, G. M., Iglesias Rodríguez, M. V., Pérez Oduardo, A., Ortiz Guilarte, E., Núñez Moreira, R., Chong Almaguer, T. R., & Álvarez Valcárcel, C. (2024). Influence of xenobiotics on the luminescence of Vibrio harveyi strains isolated from Cuban marine waters. Revista Ciencias Marinas Y Costeras, 16(2), 29-49. https://doi.org/10.15359/revmar.16-2.2

Comentarios (ver términos de uso)