Batimetría derivada por satélite (sdb): una aproximación a la cartografía batimétrica con imágenes multiespectrales en aguas poco profundas de Bahía Solano, Colombia

Autores/as

DOI:

https://doi.org/10.15359/revmar.12-1.6

Palabras clave:

Batimetría, Landsat 8, Pacífico colombiano, satélite, SIG

Resumen

La medición de las profundidades del océano juega un rol fundamental en la planificación y la gestión de recursos marinos y la navegación segura de embarcaciones. La Batimetría Derivada por Satélite (SDB) se presenta como una técnica complementaria para determinar las profundidades en aguas costeras a través de técnicas de Teledetección y Sistemas de Información Geográfica (SIG). El objetivo de este estudio fue determinar la aplicabilidad de la SDB en aguas poco profundas en el sector de “Punta Luna” en bahía Solano, al norte del litoral Pacífico colombiano que utiliza imágenes del satélite Landsat 8 de enero del 2017 y datos batimétricos in situ de noviembre del 2016. El principal resultado obtenido en este estudio fue la estimación de profundidades de hasta ± 7 m con un R2 = 0.80, se obtuvo un error RMSE y MAE de 1.49 y 2.22 m respectivamente; las profundidades estimadas por la SDB cumplen en un 51.17% la medida de Incertidumbre Vertical Total (TVU) para la categoría del Orden Especial, referente al estándar de levantamientos hidrográficos de la Organización Hidrográfica Internacional (IOH). Los resultados obtenidos servirán como caso práctico para obtener profundidades mediante imágenes multiespectrales y denotan un referente para los servicios hidrográficos y académicos interesados en temas de investigación marina y costera de la región.

Biografía del autor/a

Mauricio Alejandro Perea-Ardila, Centro de Investigaciones Oceanográficas e Hidrográficas del Pacífico

 Área de Manejo Integrado de Zona Costera. Capitanía de puerto de Tumaco.

Fernando Oviedo-Barrero, Centro de Investigaciones Oceanográficas e Hidrográficas del Pacífico

 Área de Manejo Integrado de Zona Costera. Capitanía de puerto de Tumaco.

Referencias

Aguilar, H., Mora, R. & Vargas, C. (2015). Metodología para la corrección atmosférica deimágenes Aster, Rapideye, Spot 2 y Landsat 8 con el módulo Flaash del software Envi. Rev. Geogr. Am. Cent., 2(53), 39-59. https://doi.org/10.15359/rgac.2-53.2

Ariza, A. (2013). Descripción y corrección de productos Landsat 8 LDCM (Landsat Data Continuity Mission) Versión 1.0. Centro de Investigación y Desarrollo - CIAF. Instituto Geográfico Agustín Codazzi. www.un-spider.org/sites/default/files/LDCM-L8.R1.pdf

Ariza, A. & Ramírez, H. M. (2014). Modelo batimétrico derivado de imágenes Landsat ETM + en zonas de arrecifes tropicales. Rev. Cartogr., 90, 43-58.

Ashphaq, M. (2018). Bathymetry estimation in turbid water using SENTINEL 2 image. https://www.adv-geosci.net/45/397/2019/adgeo-45-397-2019.pdf

Benny, A. H. & Dawson, G. J. (1983). Satellite Imagery as an Aid to Bathymetric Charting in the Red Sea. CARTOGR J., 20(1), 5-16. http://doi.org/10.1179/caj.1983.20.1.5

Bramante, J. F., Raju, D. K. & Sin, T. M. (2013). Multispectral derivation of bathymetry in Singapore’s shallow, turbid waters. Int. J. Remote Sens., 34(6), 2070-2088. http://doi.org/10.1080/01431161.2012.734934

Caballero, I. & Stumpf, R. P. (2020). Atmospheric correction for satellite-derived bathymetry in the Caribbean waters : from a single image to multi-temporal approaches using Sentinel-2A/B. Opt. Express, 28(8), 11742-11766. http://doi.org/10.1364/OE.390316

CIOH. Centro de Investigaciones Oceanográficas e Hidrográficas del Caribe. (2017). Carta Hidrográfica 710, bahía interior de Solano Escala 1:10.000. https://www.cioh.org.co/index.php/es/cartas-nauticas.html

Chéiner, R., Faucher, M. A. & Ahola, R. (2018). Satellite-Derived Bathymetry for Improving Canadian Hydrographic Service Charts. ISPRS Int. J. Geo-Inf., 7(306), 2-15. http://doi.org/10.3390/ijgi7080306

Chybicki, A. (2017). Mapping south baltic near-shore bathymetry using sentinel-2 observations. Pol. Marit. Res., 24(3), 15-25. https://doi.org/10.1515/pomr-2017-0086

Deng, Z., Ji, M. & Zhang, Z. (2008). Mapping bathymetry from multi-source remote sensing images: a case study in the beilun estuary, guangxi, China. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 37, 1321-1326. https://www.isprs.org/proceedings/XXXVII/congress/8_pdf/13_ThS-19/05.pdf

Dierssen, H. M., Zimmerman, R. C. Leathers, R. A. Downes, T. V. & Davis, C. O. (2003). Ocean color remote sensing of seagrass and bathymetry in the Bahamas Banks by high-resolution airborne imagery. Limnol. Oceanogr., 48, 444-455. https://doi.org/10.4319/lo.2003.48.1_part_2.0444

Ekpa, A. U. & Ojinnaka, O. C. (2018). Estimating bathymetry of cross river in Nigeria using remote sensing technique. SSRG Int. J. Geoinf. Geol. Sci., 5(3), 1-15. https://doi.org/10.14445/23939206/IJGGS-V5I3P101

ESRI. (2018). ArcGIS Desktop: Release 10.6. EE. UU.: Environmental Systems Research Institute. https://desktop.arcgis.com/es/

Evagorou, E., Mettas, C. Agapiou, A. Themistocleous, K. & Hadjimitsis, D. (2019). Bathymetric maps from multi-temporal analysis of Sentinel-2 data: the case study of Limassol, Cyprus. Adv. Geosci., 45, 397-407. https://doi.org/10.5194/adgeo-45-397-2019

Gao, J. (2009). Bathymetric mapping by means of remote sensing: Methods, accuracy and limitations. Prog. Phys. Geogr., 33(1), 103-116. https://doi.org/10.1177/0309133309105657

Goodrich, K. (2018). Machine Learning Applications for Satellite Derived Bathymetry. Colombia: GEBCO. https://iho.int/mtg_docs/rhc/MACHC/MACHC19/MACHC19-06.7-TCarta.pdf

Hedley, J., Harborne, A. & Mumby, P. (2005). Simple and robust removal of sun glint for mapping shallow-water benthos Simple and robust removal of sun glint for mapping shallow-water. Int. J. Remote Sens., 26(10), 2107-2112. https://doi.org/10.1080/01431160500034086

Ibrahim, M. & Cracknell, A. P. (1990). Cover Bathymetry using Landsat MSS data of Penang Island in Malaysia. Int. J. Remote Sens., 11(4), 557-559. http://doi.org/10.1080/01431169008955040

IHO-IOC. International Hydrographic Organization - Intergovernmental Oceanographic Commission (2019). The IHO-IOC GEBCO CookBook. Francia: OHI Publication B-11, IOC Manuals and Guides 63. International Hydrographic Organization, Intergovernmental Oceanographic Commission. https://www.star.nesdis.noaa.gov/socd/lsa/GEBCO_Cookbook/

Jagalingam, P., Akshaya, B. J. & Hegde, A. V. (2015). Bathymetry mapping using landsat 8 satellite imagery. Procedia Eng., 116(1), 560-566. https://doi.org/10.1016/j.proeng.2015.08.326

Jégat, V., Pe´eri, S. Freire, R. Klemm, A. & Nyberg, J. (2016, mayo). Satellite-Derived Bathymetry: Performance and Production. Canadian Hydrographic Conference, Halifax, NS.

Jonas, M. (2018, junio). Why is satellite derived bathymetry needed? SDB Day, User and Technology Forum, Munich, Alemania.

Kabiri, K. (2017). Accuracy assessment of near-shore bathymetry information retrieved from Landsat-8 imagery. Earth Sci. Inform., 10, 235-245. http://doi.org/10.1007/s12145-017-0293-7

Kimeli, A., Thoya, P. Ngisiang, N. Ong, H. & Magori, C. (2018). Satellite-derived bathymetry: A case study of Mombasa Port Channel and its approaches, Kenya. West. Indian Ocean J. Mar. Sci., 17(2), 93-102. http://dx.doi.org/10.4314/wiojms.v17i2.8

Knudby, A., Ahmad, S. K. & Ilori, C. (2016). The Potential for Landsat-Based Bathymetry in Canada. Can. J. Remote. Sens., 42, 367-378. http://doi.org/10.1080/07038992.2016.1177452

Lyzenga, D. (1978). Passive remote sensing techniques for mapping water depth and bottom features. Appl. Opt., 17(3), 379-383. http://doi.org/10.1364/AO.17.000379

Lyzenga, D. (1985). Shallow-water bathymetry using combined lidar and passive multispectral scanner data. Int. J. Remote Sens., 6(1), 115-125. https://www.tandfonline.com/doi/abs/10.1080/01431168508948428

Mavraeidopoulos, A., Navy, H. Pallikaris, A. Academy, H. N. & Oikonomou, E. (2017). Satellite derived bathymetry (SDB) and safety of navigation. Int. Hydrogra. Rev., 7-19. https://journals.lib.unb.ca/index.php/ihr/article/view/26290

Najhan, S., Mohd, M. & Rozaimi, H. (2017). Satellite-Derived Bathymetry: Accuracy assessment on depths derivation algorithm for shallow water area. Int. Arch. Photogramm., Remote Sens. Spat. Inform. Sci., 42, 159-164. https://doi.org/10.5194/isprs-archives-XLII-4-W5-159-2017

OIH. Organización Hidrográfica Internacional. (2008). Normas de la OHI para los Levantamientos Hidrográficos. S-44 (5th ed.). Francia. Bureau Hidrográfico Internacional. http://bathyswath.com/sites/default/files/documents/S-44_5S.pdf

Pacheco, A., Horta, J. Loureiro, C. & Ferreira, Ó. (2016). Retrieval of nearshore bathymetry from Landsat 8 images: A tool for coastal monitoring in shallow waters. Remote Sens. Environ, 159, 102-116. https://doi.org/10.1016/j.rse.2014.12.004

Pe’eri, S., Parrish, C. Azuike, C. & Armstrong, A. (2014). Satellite remote sensing as a reconnaissance tool for assessing nautical chart adequacy and completeness. Mar. Geod., 37(3), 37-41. https://doi.org/10.1080/01490419.2014.902880

Philpot, W. (1989). Bathymetric mapping with passive multispectral imagery. Appl. Opt., 28(8), 1569-1578. http://doi.org/10.1364/AO.28.001569

Pierini, O. & Rodríguez, A. (2014). Caracterización oceanográfica de la bahía de Solano. Boletín Científico CIOH., 32, 223-256. https://doi.org/10.26640/22159045.274

Polcyn, F. C., Brown, W. L. & Sattinger, I. J. (1970). The Measurement of Water Depth by Remote Sensing Techniques. EE. UU.: The Institute of Science and Technology, The University of Michigan. https://pdfs.semanticscholar.org/59b2/a818598554825c7923bc3d51edd64d443f1d.pdf

Politi, E., Paterson, S. K. Scarrott, R. Tuohy, E. Mahony, C. O. & Cámaro-garcía, W. C. A. (2019). Earth observation applications for coastal sustainability: potential and challenges for implementation. Anthropocene Coasts., 2(1), 306-329. https://doi.org/10.1139/anc-2018-0015

Pushparaj, J. & Hegde, A. V. (2016). Estimation of bathymetry along the coast of Mangaluru using Landsat-8 imagery. Int. J. Ocean Climate Syst., 8(2), 71-83. https://doi.org/10.1177/1759313116679672

Putri, J. C. A., Fuad, M. A. Z. & Asa´di, M. A. (2018). Bathymetry mapping using Landsat 8 multyspectral data of bangsring coastal area. Omni-Akuatika, 14(1), 54-61. https://doi.org/10.20884/1.oa.2018.14.1.368

Rocchio, L. E. P. (2016). Avoiding Rock Bottom: How Landsat Aids Nautical Charting. Landsat Sci., 71-77. https://landsat.gsfc.nasa.gov/wp-content/uploads/2016/08/Landsat_Improve_Life_Bathymetry.pdf

Setiawan, K., Adawiah, S. Marini, Y. & Winarso, G. (2017). Bathymetry data extraction analysis using Landsat 8 data. Int. J. Remote Sens. Earth Sci., 13(2), 79-86. https://doi.org/10.30536/j.ijreses.2016.v13.a2448

Stumpf, R. P., Holderied, K. & Sinclair, M. (2003). Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol. Oceanogr, 48, 54-556. https://doi.org/10.4319/lo.2003.48.1_part_2.0547

Tang, K. K. W. & Mahmud, M. R. (2018). Imagery-derived bathymetry in Strait of Johor’s turbid waters using multispectral images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 42, 139-145. https://doi.org/10.5194/isprs-archives-XLII-4-W9-139-2018

USGS. U. S. Geological Survey. (2017). Imágen Multiespectral Landsat 8 OLI, ID LC80100562017023LGN01. EE. UU.: Landsat Data Continuity Mission. https://earthexplorer.usgs.gov/

USGS. U. S. Geological Survey. (2018). Landsat 8 (L8) Data Users Handbook - Version 3.0. EE. UU.: USGS. https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/LSDS-1574_L8_Data_Users_Handbook.pdf

Vinayaraj, P., Raghavan, V. & Masumoto, S. (2016). Satellite-Derived Bathymetry using Adaptive Geographically Weighted Regression Model. Mar. Geod., 39(6), 458-478. http://doi.org/10.1080/01490419.2016.1245227

Vivas-Aguas, L. J., Espinosa, J. Sánchez, B. Cadavid, P. Bautista, M. Quintero, J…& Espinosa. (2012). Diagnóstico y Evaluación de la Calidad Ambiental Marina en el Caribe y Pacífico colombiano. Red de vigilancia para la conservación y protección de las aguas marinas y costeras de Colombia –REDCAM. Informe técnico 2011. Santa Marta: INVEMAR.

Warne, D. K. (1978). Landsat as an Aid in the Preparation of Hydrographic Charts. Photogramm Eng Remote Sensin., 44(8), 1011-1016.

Publicado

2020-02-21

Cómo citar

Perea-Ardila, M. A., & Oviedo-Barrero, F. (2020). Batimetría derivada por satélite (sdb): una aproximación a la cartografía batimétrica con imágenes multiespectrales en aguas poco profundas de Bahía Solano, Colombia. Revista Ciencias Marinas Y Costeras, 12(1), 117.134. https://doi.org/10.15359/revmar.12-1.6

Número

Sección

Artículos científicos

Cómo citar

Perea-Ardila, M. A., & Oviedo-Barrero, F. (2020). Batimetría derivada por satélite (sdb): una aproximación a la cartografía batimétrica con imágenes multiespectrales en aguas poco profundas de Bahía Solano, Colombia. Revista Ciencias Marinas Y Costeras, 12(1), 117.134. https://doi.org/10.15359/revmar.12-1.6

Comentarios (ver términos de uso)

Artículos más leídos del mismo autor/a