Al ritmo de la marea: caracterización del paisaje acústico de la zona costera de Punta Morales, Puntarenas, Costa Rica

Autores/as

DOI:

https://doi.org/10.15359/revmar.13-2.4

Palabras clave:

mareas, ecosistemas costeros, ecoacústica, geofonías, índices acústicos

Resumen

En los ecosistemas costeros, las geofonías forman parte fundamental del entorno acústico y el impacto del oleaje sobre su geomorfología es un ejemplo de ello. Se colocó una grabadora Audiomoth en cuatro sitios de Punta Morales, Puntarenas, Costa Rica, del 22 de noviembre al 18 de diciembre, 2020. Se programaron para registrar 60 segundos cada 10 minutos durante 24 horas con el objetivo de caracterizar el paisaje acústico asociado al ciclo de mareas de la localidad. De las grabaciones obtenidas, se analizaron: el Índice de Diferencia Normalizada del Paisaje Sonoro (NDSI), las Tecnofonías, la Entropía Acústica (TE) y el Nivel de Presión Sonora (SPL). Estos valores se contrastaron entre sitios mediante un análisis de medias recortadas unidireccionales; se realizó una correlación entre el SPL y el nivel de marea en cada lugar y, por último, se compararon los valores en un mismo punto de muestreo entre pleamar y bajamar. Se encontraron diferencias en todas las comparaciones realizadas; además, en dos sitios se identificó una correlación positiva y se observaron diferencias de SPL entre pleamar y bajamar. El sustrato y la vegetación de cada lugar pudieron influir en estas diferencias. Asimismo, el oleaje modifica la dinámica acústica de algunos sectores significativamente, por lo que pudo haber afectado el paisaje sonoro de esta zona costera.

Biografía del autor/a

Ian Portuguez-Brenes, Universidad Nacional

Programa de Manejo de Recursos Naturales, Escuela de Ciencias Exactas y Naturales, Estatal a Distancia, Mercedes de Montes de Oca, San José, Heredia, Costa Rica.

Roberto Vargas-Masís, Universidad Estatal a Distancia

Laboratorio de Investigación e Innovación Tecnológica, Vicerrectoría de Investigación,

Héctor Perdomo-Velázquez, Universidad Nacional Autónoma de México

Centro de Estudios Mexicanos

Andrea García-Rojas, Universidad Nacional

Escuela de Ciencias Biológicas

Referencias

Alfaro-Rojas, D., Portuguez-Brenes, I., Perdomo-Velázquez, H. & Vargas-Masís, R. (2020). Ruido ambiental en áreas verdes urbanas y periurbanas de una microcuenca en Heredia, Costa Rica. UNED Res. J., 12(2), 28-46. https://doi.org/10.22458/urj.v12i2.2846

Barber, J. R., Crooks, K. R. & Fristrup, K. M. (2010). The costs of chronic noise exposure for terrestrial organisms. Trends Ecol. & Evol., 25(3), 180-189. doi: https://10.1016/j.tree.2009.08.002

Best, D. J. & Roberts, D. E. (1975). Algorithm AS 89: the upper tail probabilities of Spearman's rho. J. R. Stat. Soc. Ser. C (Appl. Stat.), 24(3), 377-379. https://doi.org/10.2307/2347111

Blumstein, D. T., Mennill, D. J., Clemins, P., Girod, L., Yao, K., Patricelli, G., ... & Kirschel, A. N. (2011). Acoustic monitoring in terrestrial environments using microphone arrays: applications, technological considerations and prospectus. J. Appl. Ecol, 48(3), 758-767. https://doi.org/10.1111/j.1365-2664.2011.01993.x

Bormpoudakis, D., Sueur, J. & Pantis, J. D. (2013). Spatial heterogeneity of ambient sound at the habitat type level: ecological implications and applications. Landsc. Ecol., 28(3), 495-506. https://doi.org/10.1007/s10980-013-9849-1

Chesmore, D., Frommolt, K.-H., Wolff, D., Bardeli, R. & Huebner, S. (2008, May). Computational bioacoustics: New tools for assessing biological diversity. Paper presented in the Ninth meeting of the Conference of the Parties (COP 9), Germany.

Crawley, M. (2002). The R Book (2nd ed.). U.K.: John Wiley & Sons Ltd.

Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M. & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci., 4(5), 293-297. https://doi.org/10.1038/ngeo1123

Doser, J. W., Hannam, K. M. & Finley, A. O. (2020). Characterizing functional relationships between anthropogenic and biological sounds: a western New York state soundscape case study. Landsc. Ecol., 35(3), 689-707. https://doi.org/10.1007/s10980-020-00973-2

Eldridge, A., Guyot, P., Moscoso, P., Johnston, A., Eyre-Walker, Y. & Peck, M. (2018). Sounding out ecoacoustic metrics: Avian species richness is predicted by acoustic indices in temperate but not tropical habitats. Ecol. Indic., 95, 939-952. https://doi.org/10.1016/j.ecolind.2018.06.012

Espinoza, M. Á. L., Crespo, G. D. L. C. R., Junco, O. D. & Hernández, J. G. (2019). Los servicios ecosistémicos en manglares: beneficios a la resiliencia del ecosistema ante cambios climáticos, a la comunidad y su desarrollo local. REMCA, 2(2), 120-127.

Farina, A. (2014). Soundscape ecology: principles, patterns, methods and applications. Springer Science & Business Media. EE. UU.: Springer.

Farina, A., Eldridge, A. & Li, P. (2021). Ecoacoustics and Multispecies Semiosis: Naming, Semantics, Semiotic Characteristics, and Competencies. Biosemiotics, 14, 141–165. https://doi.org/10.1007/s12304-021-09402-6

Ferrini, F., Fini, A., Mori, J. & Gori, A. (2020). Role of vegetation as a mitigating factor in the urban context. Sustainability, 12(10), 42-47. https://doi.org/10.3390/su12104247

Gómez, W. E., Isaza, C. V. & Daza, J. M. (2018). Identifying disturbed habitats: A new method from acoustic indices. Ecol. Inform., 45, 16-25. https://doi.org/10.1016/j.ecoinf.2018.03.001

Han, X., Huang, X., Liang, H., Ma, S. & Gong, J. (2018). Analysis of the relationships between environmental noise and urban morphology. Environ. Pollut., 233, 755-763. https://doi.org/10.1016/j.envpol.2017.10.126

Hildebrand, J. A. (2009). Anthropogenic and natural sources of ambient noise in the ocean. Mar. Ecol. Prog. Ser., 395, 5-20. https://doi.org/10.3354/meps08353

Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika, 75(4), 800-802. https://doi.org/10.1093/biomet/75.4.800

Karjadi, E. A., Badiey, M., Kirby, J. T. & Bayindir, C. (2011). The effects of surface gravity waves on high-frequency acoustic propagation in shallow water. IEEE J. Ocean. Eng., 37(1), 112-121. https://doi.org/10.1109/JOE.2011.2168670

Kasten, E. P., Gage, S. H., Fox, J. & Joo, W. (2012). The remote environmental assessment laboratory's acoustic library: An archive for studying soundscape ecology. Ecol. Inform., 12, 50-67. https://doi.org/10.1016/j.ecoinf.2012.08.001

Ligges, U., Krey, S., Mersmann, O. & Schnackenberg, S. (2018). tuneR: analysis of music and speech. See https://CRAN. R-project. org/package= tuneR.

Mair, P. & Wilcox, R. (2020). Robust statistical methods in R using the WRS2 package. Behav. Res. Methods., 52(2), 464-488. https://doi.org/10.3758/s13428-019-01246-w

McCormick, M. I., Allan, B. J., Harding, H. & Simpson, S. D. (2018). Boat noise impacts risk assessment in a coral reef fish but effects depend on engine type. Sci. Rep., 8(1), 1-11. https://doi.org/10.1038/s41598-018-22104-3

Monczak, A., Mueller, C., Miller, M. E., Ji, Y., Borgianini, S. A. & Montie, E. W. (2019). Sound patterns of snapping shrimp, fish, and dolphins in an estuarine soundscape of the southeastern USA. Mar. Ecol. Prog. Ser., 609, 49-68. https://doi.org/10.3354/meps12813

Mullet, T. C., Gage, S. H., Morton, J. M. & Huettmann, F. (2016). Temporal and spatial variation of a winter soundscape in south-central Alaska. Landscape Ecol., 31(5), 1117-1137. https://doi.org/10.1007/s10980-015-0323-0

Parris, K. M. & Schneider, A. (2008). Impacts of traffic noise and traffic volume on birds of roadside habitats. Ecol. Soc. 14(1), 29. https://doi.org/10.5751/es-02761-140129

Pijanowski, B. C., Farina, A., Gage, S. H., Dumyahn, S. L. & Krause, B. L. (2011a). What is soundscape ecology? An introduction and overview of an emerging new science. Landsc. Ecol., 26(9), 1213-1232. https://doi.org/10.1007/s10980-011-9600-8

Pijanowski, B. C., Villanueva-Rivera, L. J., Dumyahn, S. L., Farina, A., Krause, B. L., Napoletano, B. M., ... & Pieretti, N. (2011b). Soundscape ecology: the science of sound in the landscape. BioScience, 61(3), 203-216. https://doi.org/10.1525/bio.2011.61.3.6

R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Radford, C. A., Stanley, J. A., Tindle, C. T., Montgomery, J. C. & Jeffs, A. G. (2010). Localized coastal habitats have distinct underwater sound signatures. Mar. Ecol. Prog. Ser., 401, 21-29. https://doi.org/10.3354/meps08451

Ramalle-Gómara, E. & De Llano, J. A. (2003). Utilización de métodos robustos en la estadística inferencial. Aten. Primaria, 32(3), 177–182. https://doi.org/10.1016/S0212-6567(03)79241-5

Ramírez-Alán, O. (2019). Sinax: Sound Index Analysis for Ecologist. R package. Versión 1.3. Disponible en: https://github.com/osoramirez/Sinax2

Ramírez, J. D. R., Montejo, G. D. L. & Guillermo, R. J. C. (2018). Manglares, desarrollo turístico y cambio climático en Playa del Carmen, corazón del caribe mexicano. Cuad. biodivers., (55), 28-40. https://doi.org/10.14198/cdbio.2018.55.03

Retamosa-Izaguirre M. I., Ramírez-Alán O. & De la O-Castro J. (2018). Acoustic indices applied to biodiversity monitoring in a Costa Rica dry tropical forest. JEA., 2(1), 1-1. https://doi.org/10.22261/JEA.TNW2NP

Silveira, J. A. H. & Hernández, C. T. (2017). Carbono azul, manglares y políticas públicas. Elementos para Pol. Públic. 1(1), 43-52.

Simpson, S. D., Radford, A. N., Holles, S., Ferarri, M. C., Chivers, D. P., McCormick, M. I. & Meekan, M. G. (2016). Small-Boat Noise Impacts Natural Settlement Behavior of Coral Reef Fish Larvae. In A. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II. Advances in Experimental Medicine and Biology (pp. 1041-1048). EE. UU.: Springer. https://doi.org/10.1007/978-1-4939-2981-8_129

Sueur, J., Aubin, T. & Simonis, C. (2008a). Seewave, a free modular tool for sound analysis and synthesis. Bioacoustics, 18(2), 213-226. https://doi.org/10.1080/09524622.2008.9753600

Sueur, J., Pavoine, S., Hamerlynck, O. & Duvail, S. (2008b). Rapid acoustic survey for biodiversity appraisal. PloS one., 3(12), e4065. https://doi.org/10.1371/journal.pone.0004065

Sueur, J., Farina, A., Gasc, A., Pieretti, N. & Pavoine, S. (2014). Acoustic indices for biodiversity assessment and landscape investigation. Acta. Acust. United Acust., 100(4), 772-781. https://doi.org/10.3813/AAA.918757

Verdugo, F. J. F., Hernández, C. A. & Pardo, D. B. (2007). Ecosistemas Acuáticos costeros: Importancia, retos y prioridades para su conservación. En O. Sánchez, M. Herzig, E. Peters, R. Márquez & L. Zambrano (Eds.), Perspectivas sobre conservación de ecosistemas acuáticos en México (pp. 147-166). México: Everest Mexicana.

Welch, B. L. (1951). On the comparison of several mean values: an alternative approach. Biometrika, 38(3/4), 330-336. https://doi.org/10.2307/2332579

Wenz, G. M. (1962). Acoustic ambient noise in the ocean: Spectra and sources. J. Acoust. Soc. Am., 34(12), 1936-1956. https://doi.org/10.1121/1.1909155

Villanueva-Rivera, L. J. & Pijanowski, B. C. (2018). Package ‘soundecology’. R package version, 1(3), 3. https://CRAN.R-project.org/package=soundecology

Yang, K. L. Center for Conservation Bioacoustics. (2019). Raven Pro: Interactive Sound Analysis Software (Version 1.6.1) [Computer software]. EE: UU.: The Cornell Lab of Ornithology. http://ravensoundsoftware.com/

Publicado

2021-07-27

Cómo citar

Portuguez-Brenes, I., Vargas-Masís, R., Perdomo-Velázquez, H., & García-Rojas, A. (2021). Al ritmo de la marea: caracterización del paisaje acústico de la zona costera de Punta Morales, Puntarenas, Costa Rica. Revista Ciencias Marinas Y Costeras, 49-68. https://doi.org/10.15359/revmar.13-2.4

Número

Sección

Artículos científicos

Cómo citar

Portuguez-Brenes, I., Vargas-Masís, R., Perdomo-Velázquez, H., & García-Rojas, A. (2021). Al ritmo de la marea: caracterización del paisaje acústico de la zona costera de Punta Morales, Puntarenas, Costa Rica. Revista Ciencias Marinas Y Costeras, 49-68. https://doi.org/10.15359/revmar.13-2.4

Comentarios (ver términos de uso)