Defesas antioxidantes no fluido celômico do ouriço-do-mar Echinometra lucunter (Linnaeus, 1758) estimulado com a inoculação de bactérias

Autores

DOI:

https://doi.org/10.15359/revmar.11-1.2

Palavras-chave:

Catalase, peroxidação lipídica, stress oxidativo, E. coli, tióis

Resumo

A fagocitose é uma resposta celular de primeira linha mediada por células especializadas chamadas celomócitos-amebócitos. Este processo permite a inclusão de partículas estranhas ou micro-organismos, que são eliminados através da geração de espécies reativas do oxigênio (ROS). A fim de avaliar o sistema de defesa antioxidante no fluido celômico (FC) do ouriço-do-mar E. lucunter sob alta atividade fagocítica (PA), foi procedida a inoculação através da membrana peristomial três estirpes bacterianas distintas: E. coli V. parahaemolyticus e M. lysodeikticus. Às 16h pós-injeção, foram determinados a capacidade fagocítica (CF), a atividade da catalase (CAT) e superóxido dismutase (SOD), os níveis de peroxidação lipídica (LPO), grupos sulfidrila (-SH) e as proteínas. Adicionalmente, foi estimado o tempo de endireitamento de cada indivíduo. A FC, CAT e as proteínas apresentaram aumentos nos organismos injetados com inoculações bacterianas. Os níveis de LPO, SOD e -SH não apresentaram variações entre os organismos experimentais. O tempo de endireitamento apresentou leves variações nos organismos estimulados com bactérias, revelando, por sua vez, uma baixa porcentagem de perda e redução do movimento de suas espinhas e pés ambulacrários. A AF e as proteínas em FC de E. lucunter indicam a eficácia do sistema imune na presença de estimulantes microbianos. Os resultados indicam que a CAT desempenha um papel preponderante na CF para evitar alterações no estado antioxidante, associadas à explosão respiratória ante atividades fagocíticas elevadas. As respostas antioxidantes de E. lucunter imunoestimulado por bactérias podem garantir sua sobrevivência no habitat natural.

Biografia do Autor

Edgar Zapata-Vívenes, Universidas de Oriente (UDO)

Departamento de Biología, Escuela de Ciencias, Núcleo de Sucre, Universidad de Oriente, Cumaná, Venezuela. Escuela de Acuicultura y Pesca, Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Bahía de Caráquez, Manabí, Ecuador

Gabriela Aparicio, Universidas de Oriente (UDO)

Departamento de Bioanálisis, Escuela de Ciencias, Núcleo de Sucre

Referências

Aebi, H. (1984). Catalase in vitro. Meth. Enzimol., 105, 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3

Anton, Y. & Salazar, R. (2009). El sistema inmune de los invertebrados. Revista Electrónica de Veterinaria, 10, 1-10.

Baba, S. P. & Bhatnagar, A. (2018). Role of thiols in oxidative stress. Curr. Opin. Toxicol. https://doi.org/10.1016/j.cotox.2018.03.005

Bastidas, M. (2017). Respuestas inmunológicas innatas en el erizo verdi-blanco Lytechinus variegatus (Echinoidea: Toxopneustidae) infectado experimentalmente con bacterias. Trabajo de grado no publicado. Universidad de Oriente, Venezuela.

Bauer, J. C. & Young, C. M. (2000). Epidermal lesions and mortality caused by vibriosis in deep-sea Bahamian echinoids: a laboratory study. Dis. Aquat. Org., 39, 193-199. Doi: 10.3354/dao039193.

Beaumont, T. (2010). The free radical theory of ageing: does it apply to Antarctic and temperate sea urchin. Tesis de doctorado no publicada. University of Atago, New Zealand.

Branco, P., Figueiredo D. & Da Silva J. (2014). Nuevos conocimientos sobre el sistema inmunitario innato de erizo de mar: coelomocytes como biosensores para el estrés ambiental. OA Biología, 2, 2.

Buggé, D. M., Hégaret, H., Wikfors, G. H. & Allam, B . (2006). Oxidative burst in hard clam (Mercenaria mercenaria) haemocytes. Fish Shell. Immunol., 23, 188-196. https://doi.org/10.1016/j.fsi.2006.10.006.

Campa-Cordova, A., Hernández-Saavedra, N. Y. & De Pilippis, R. (2002). Generation of superoxide anion and SOD activity in hemocytes and muscle of American white shrimp (Litopenaeus vannamei) as a response to β-glucan and sulphate polysaccharide. Fish Shell. Inmunol., 12, 353-366. https://doi.org/10.1006/fsim.2001.0377.

Chihuailaf, R., Contreras, P. & Wittwer, F. (2002). Patogénesis del estrés oxidativo: Consecuencias y evaluación en salud animal. Veterinaria México, 33, 265-283.

Cipriano-Maack, A. N. (2016). Immunostimulatory effects of different aspects of aquaculture on the host response in the edible sea urchin, Paracentrotus lividus. Tesis de doctorado no publicada, University College Cork, Ireland.

Cooper, E., Raftos, D., Zhang, Z. & Kelly, K. (1995). Purification and characterisation of tunicate opsonins and cytokine-like proteins. In J. S. Stolen (Ed). Techniques in Fish Immunology-4: Immunology and pathology of aquatic invertebrates (pp. 43-54). Fair Haven, EE. UU.: SOS Publications.

Couter, G., Warnau, M., Jangoux, M. & Dubois, P. (1999). Reactive oxygen species (ROS) production by amoebocytes of Asterias rubens (Echinodermata). Fish. Shell. Immunol., 12, 187-200. https://doi.org/10.1006/fsim.2001.0366

Dale, B. & Russo, P. (1988). Sulfhydryl groups are involved in the activation of sea urchin eggs. Gam. Res., 19(2), 161-168. https://doi.org/10.1002/mrd.1120190206

Dheilly, N. (2010). Proteomic analysis of sea urchin immune responses and characterization of highly variable immune response proteins. Tesis de doctorado no publicada. Sydney, NSW, Australia.

Dheilly, N., Haynes, P., Raftos, D. & Nair S. (2012). Time course proteomic profiling of cellular responses to immunological challenge in the sea urchin, Heliocidaris erythrogramma. Develop. Comp. Immunol., 37, 243-256. https://doi.org/10.1016/j.dci.2012.03.006

Donaghy, L., Kraffe, E., Le Goıc, N., Lambert, C., Volety, A. K. & Soudant, P. (2012). Reactive oxygen species in unstimulated hemocytes of the pacific oyster Crassostrea gigas: A mitochondrial involvement. PLoS ONE, 7, e46594. https://doi.org/10.1371/journal.pone.0046594

Dolmatova, L., Elisekina, M., Timchenko, N., kovalera, A., & Shitkova, O. (2003). Generation of reractive oxygen species in the different fractions of the coclomocytes of holothurian Eupentacia fraundatris in response to the thermostable toxin of Yersenia pseudotuberculosis in vitro. Chinese J Lim. Oceanol., 21(4), 293-304. https://doi.org/10.1007/BF02860423

Ellman, G. L. (1959). Tissue sulfhydryl groups. Arch. Biochem. Biophys., 82, 70-77. https://doi.org/10.1016/0003-9861(59)90090-6

Halliwell, B. & Gutteridge, J. M. C. (2015). Free Radicals in Biology and Medicine. New York, EE. UU.: Oxford University Press. http://dx.doi.org/10.1093/acprof:oso/9780198717478.001.0001

Holmblad, T. & Söderhäll, K. (1999). Cell adhesion molecules and antioxidant enzymes in a crustacean, possible role in immunity. Aquaculture, 172, 111-123. https://doi.org/10.1016/S0044-8486(98)00446-3

Lawrence, J. & Balzhin, A. 1998. Life-history strategies and the potential of sea urchins for aquaculture. J Shellfish. Res., 17, 1515-1522.

Majeske, A. J., Bayne, C. J. & Smith, L. C. (2013). Aggregation of sea urchin phagocytes is augmented in vitro by lipopolysaccharide. Publ. Libr. Sci., 8, 61419. https://doi.org/10.1371/journal.pone.0061419

Matranga, V., Pinsino, A., Celi, M., Natoli, A., Bonaventura, R., Schröder, H. C. &, Müller, W. E. G. (2005) Monitoring chemical and physical stress using sea urchin immune cells. In V. Matranga (Ed) Echinodermata (pp. 85-110), New York, EE. UU.: Springer. https://doi.org/10.1007/3-540-27683-1_5

Matranga, V., Pinsino, A., Celi, M., Di Bella, G. & Natoli, A. (2006). Impacts of UV-B radiation on short-term cultures of sea urchin coelomocytes. Mar. Biol., 149, 25-34. https://doi.org/10.1007/s00227-005-0212-1

Mydlarz, L., Jones, L. & Drew Harvell, C. (2006). Innate Immunity, environmental drivers, and disease ecology of marine and freshwater invertebrates. An. Rev. Ecol. Evol. System., 37, 251-88. https://doi.org/10.1146/annurev.ecolsys.37.091305.110103

Nebot, C., Moutet, M., Huet, P., J. Yadan & Chau-diere, J. (1993). Spectrophotometric assay of superoxide dismutase activity based on the activated autoxidation of a tetracyclic catechol. Anal. Biochem., 214, 442-451. https://doi.org/10.1006/abio.1993.1521

Ohkawa, H., Ohishi N. & Yagi, K. (1978). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Rev. Anal. Biochem., 95(2), 351-358. https://doi.org/10.1016/0003-2697(79)90738-3

Ovando, P. (2009). Caracterización celular y molecular de la respuesta inmune en el erizo antártico Sterechinus neumayeri. Tesis de grado no publicada. Universidad de Magallanes, Chile.

Pinsino, A. & Matranga, V. (2015). Sea urchin immune cells as sentinels of environmental stress. Dev. Comp. Immunol., 49, 198-205. http://dx.doi.org/10.1016/j.dci.2014.11.013

Pipe, R. (1992). Generation of reactive oxygen metabolites by the hemocytes of the mussel Mytilus edulis. Dev. Comp. Immunol., 17(1-2), 211-219. https://doi.org/10.1016/0145-305X(92)90012-2

Reyes-Luján, J., Arrieche, D., Lodeiros-Seijo, C., Zapata-Vívenes, E., Barrios, J. & Salgado, W. (2015). Ciclo gametogénico de Echinometra lucunter (Linnaeus 1758) (Echinometra: Echinoidea) en el Nororiente de Venezuela. Rev. Biol. Trop., 63, 273-283.

Robinson, H. & Hogden, C. (1940). Relationship to the protein which bears a quantitative production of a stable color conditions necessary for the proteins: a study of the determination of serum concentration. J. Biol. Chem., 35, 707-725.

Roch, P. (1999). Defense mechanisms and disease prevention in farmed marine invertebrates. Aquaculture, 172 (1-2), 125-145. https://doi.org/10.1016/S0044-8486(98)00439-6

Sokal, R. & Rohlf, J. (1981). Biometry: The Principles and Practice of Statistics in Biological Reasearch. New York, EE. UU.: WH Freeman.

Storey, K. (1996). Oxidative stress: animal adaptations in nature. Braz. J. Med. Biol. Res., 29(12), 1715-1733.

Taylor, J., Lovera, C., Whaling, P., Buck, K., Pane, E. & Barry, J. (2014). Physiological effects of environmental acidification in the deep-sea urchin Strongylocentrotus fragilis. Biogeosciences, 11, 1413-1423. https://doi.org/10.5194/bg-11-1413-2014

Tucunduva-Faria, M. & Machado-Cunha da Silva, J. (2008). Innate immune response in the sea urchin Echinometra lucunter (Echinodermata). J. Invert. Pathol., 98, 58-62. https://doi.org/10.1016/j.jip.2007.10.004

Van-Laer, K., Hamilton, C. & Messens, J. (2013). Low-Molecular-Weight Thiols in Thiol-Disulfide Exchange. Antiox. Red. Signal., 18(13), 1642-1653. http://doi.org/10.1089/ars.2012.4964

Wang, Y., Feng, N., Li, Q., Ding, J., Zhan, Y. Y. & Chang, Y. Q. (2012a). Isolation and characterization of bacteria associated with a syndrome disease of sea urchin Strongylocentrotus intermedius in North China. Aquacult. Res., 44, 1-10. https://doi.org/10.1111/j.1365-2109.2011.03073.x

Wang, Y., Chang, Y. Q. & Lawrence J. M. (2012b). Disease in sea urchin. In J. Lawrence, (Ed), Edible Sea Urchins: Biology and Ecology (pp. 179-186). Amsterdam, Netherlands: Elsevier

Yeh, S. T. & Chen, J. C. (2008). Immunomodulation by carrageenans in the white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus. Aquaculture, 276(1-4), 22-28. https://doi.org/10.1016/j.aquaculture.2008.01.034

Publicado

2019-03-06

Como Citar

Zapata-Vívenes, E., & Aparicio, G. (2019). Defesas antioxidantes no fluido celômico do ouriço-do-mar Echinometra lucunter (Linnaeus, 1758) estimulado com a inoculação de bactérias. Revista Ciencias Marinas Y Costeras, 11(1), 27-42. https://doi.org/10.15359/revmar.11-1.2

Edição

Seção

Artigos científicos

Como Citar

Zapata-Vívenes, E., & Aparicio, G. (2019). Defesas antioxidantes no fluido celômico do ouriço-do-mar Echinometra lucunter (Linnaeus, 1758) estimulado com a inoculação de bactérias. Revista Ciencias Marinas Y Costeras, 11(1), 27-42. https://doi.org/10.15359/revmar.11-1.2

Comentarios (ver términos de uso)

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 > >>