Batimetria Derivada por Satélite (SDB): uma aproximação à cartografia batimétrica com imagens multiespectrais em águas rasas da Baía Solano, Colômbia
DOI:
https://doi.org/10.15359/revmar.12-1.6Palavras-chave:
Batimetria, Landsat 8, Pacífico colombiano, satélite, SIGResumo
A medição das profundidades do oceano tem um papel fundamental no planejamento e na gestão de recursos marinhos e na navegação segura de embarcações. A Batimetria Derivada por Satélite (SDB) apresenta-se como uma técnica complementar para determinar as profundidades nas águas costeiras por meio de técnicas de Teledetecção e Sistemas de Informação Geográfica (SIG). Este estudo teve como objetivo determinar a aplicabilidade da SDB em águas rasas no setor de “Punta Luna” na Baía Solano, ao norte do litoral Pacífico colombiano que utiliza imagens do satélite Landsat 8 de janeiro de 2017 e dados batimétricos in situ de novembro de 2016. O principal resultado adquirido neste estudo foi a estimativa de profundidades de até ± 7 m com um R2 = 0.80, foi obtido um erro RMSE e MAE de 1.49 e 2.22 m respectivamente; as profundidades estimadas pela SDB cumprem em 51.17% a medida de Incerteza Vertical Total (IVT) na categoria da Ordem Especial, referente ao padrão de pesquisa hidrográfica da Organização Hidrográfica Internacional (OHI). Os resultados adquiridos servirão como caso prático para obter profundidades mediante imagens multiespectrais e denotam um referencial para os serviços hidrográficos e acadêmicos interessados em temas de pesquisa marinha e costeira da região.
Referências
Aguilar, H., Mora, R. & Vargas, C. (2015). Metodología para la corrección atmosférica deimágenes Aster, Rapideye, Spot 2 y Landsat 8 con el módulo Flaash del software Envi. Rev. Geogr. Am. Cent., 2(53), 39-59. https://doi.org/10.15359/rgac.2-53.2
Ariza, A. (2013). Descripción y corrección de productos Landsat 8 LDCM (Landsat Data Continuity Mission) Versión 1.0. Centro de Investigación y Desarrollo - CIAF. Instituto Geográfico Agustín Codazzi. www.un-spider.org/sites/default/files/LDCM-L8.R1.pdf
Ariza, A. & Ramírez, H. M. (2014). Modelo batimétrico derivado de imágenes Landsat ETM + en zonas de arrecifes tropicales. Rev. Cartogr., 90, 43-58.
Ashphaq, M. (2018). Bathymetry estimation in turbid water using SENTINEL 2 image. https://www.adv-geosci.net/45/397/2019/adgeo-45-397-2019.pdf
Benny, A. H. & Dawson, G. J. (1983). Satellite Imagery as an Aid to Bathymetric Charting in the Red Sea. CARTOGR J., 20(1), 5-16. http://doi.org/10.1179/caj.1983.20.1.5
Bramante, J. F., Raju, D. K. & Sin, T. M. (2013). Multispectral derivation of bathymetry in Singapore’s shallow, turbid waters. Int. J. Remote Sens., 34(6), 2070-2088. http://doi.org/10.1080/01431161.2012.734934
Caballero, I. & Stumpf, R. P. (2020). Atmospheric correction for satellite-derived bathymetry in the Caribbean waters : from a single image to multi-temporal approaches using Sentinel-2A/B. Opt. Express, 28(8), 11742-11766. http://doi.org/10.1364/OE.390316
CIOH. Centro de Investigaciones Oceanográficas e Hidrográficas del Caribe. (2017). Carta Hidrográfica 710, bahía interior de Solano Escala 1:10.000. https://www.cioh.org.co/index.php/es/cartas-nauticas.html
Chéiner, R., Faucher, M. A. & Ahola, R. (2018). Satellite-Derived Bathymetry for Improving Canadian Hydrographic Service Charts. ISPRS Int. J. Geo-Inf., 7(306), 2-15. http://doi.org/10.3390/ijgi7080306
Chybicki, A. (2017). Mapping south baltic near-shore bathymetry using sentinel-2 observations. Pol. Marit. Res., 24(3), 15-25. https://doi.org/10.1515/pomr-2017-0086
Deng, Z., Ji, M. & Zhang, Z. (2008). Mapping bathymetry from multi-source remote sensing images: a case study in the beilun estuary, guangxi, China. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 37, 1321-1326. https://www.isprs.org/proceedings/XXXVII/congress/8_pdf/13_ThS-19/05.pdf
Dierssen, H. M., Zimmerman, R. C. Leathers, R. A. Downes, T. V. & Davis, C. O. (2003). Ocean color remote sensing of seagrass and bathymetry in the Bahamas Banks by high-resolution airborne imagery. Limnol. Oceanogr., 48, 444-455. https://doi.org/10.4319/lo.2003.48.1_part_2.0444
Ekpa, A. U. & Ojinnaka, O. C. (2018). Estimating bathymetry of cross river in Nigeria using remote sensing technique. SSRG Int. J. Geoinf. Geol. Sci., 5(3), 1-15. https://doi.org/10.14445/23939206/IJGGS-V5I3P101
ESRI. (2018). ArcGIS Desktop: Release 10.6. EE. UU.: Environmental Systems Research Institute. https://desktop.arcgis.com/es/
Evagorou, E., Mettas, C. Agapiou, A. Themistocleous, K. & Hadjimitsis, D. (2019). Bathymetric maps from multi-temporal analysis of Sentinel-2 data: the case study of Limassol, Cyprus. Adv. Geosci., 45, 397-407. https://doi.org/10.5194/adgeo-45-397-2019
Gao, J. (2009). Bathymetric mapping by means of remote sensing: Methods, accuracy and limitations. Prog. Phys. Geogr., 33(1), 103-116. https://doi.org/10.1177/0309133309105657
Goodrich, K. (2018). Machine Learning Applications for Satellite Derived Bathymetry. Colombia: GEBCO. https://iho.int/mtg_docs/rhc/MACHC/MACHC19/MACHC19-06.7-TCarta.pdf
Hedley, J., Harborne, A. & Mumby, P. (2005). Simple and robust removal of sun glint for mapping shallow-water benthos Simple and robust removal of sun glint for mapping shallow-water. Int. J. Remote Sens., 26(10), 2107-2112. https://doi.org/10.1080/01431160500034086
Ibrahim, M. & Cracknell, A. P. (1990). Cover Bathymetry using Landsat MSS data of Penang Island in Malaysia. Int. J. Remote Sens., 11(4), 557-559. http://doi.org/10.1080/01431169008955040
IHO-IOC. International Hydrographic Organization - Intergovernmental Oceanographic Commission (2019). The IHO-IOC GEBCO CookBook. Francia: OHI Publication B-11, IOC Manuals and Guides 63. International Hydrographic Organization, Intergovernmental Oceanographic Commission. https://www.star.nesdis.noaa.gov/socd/lsa/GEBCO_Cookbook/
Jagalingam, P., Akshaya, B. J. & Hegde, A. V. (2015). Bathymetry mapping using landsat 8 satellite imagery. Procedia Eng., 116(1), 560-566. https://doi.org/10.1016/j.proeng.2015.08.326
Jégat, V., Pe´eri, S. Freire, R. Klemm, A. & Nyberg, J. (2016, mayo). Satellite-Derived Bathymetry: Performance and Production. Canadian Hydrographic Conference, Halifax, NS.
Jonas, M. (2018, junio). Why is satellite derived bathymetry needed? SDB Day, User and Technology Forum, Munich, Alemania.
Kabiri, K. (2017). Accuracy assessment of near-shore bathymetry information retrieved from Landsat-8 imagery. Earth Sci. Inform., 10, 235-245. http://doi.org/10.1007/s12145-017-0293-7
Kimeli, A., Thoya, P. Ngisiang, N. Ong, H. & Magori, C. (2018). Satellite-derived bathymetry: A case study of Mombasa Port Channel and its approaches, Kenya. West. Indian Ocean J. Mar. Sci., 17(2), 93-102. http://dx.doi.org/10.4314/wiojms.v17i2.8
Knudby, A., Ahmad, S. K. & Ilori, C. (2016). The Potential for Landsat-Based Bathymetry in Canada. Can. J. Remote. Sens., 42, 367-378. http://doi.org/10.1080/07038992.2016.1177452
Lyzenga, D. (1978). Passive remote sensing techniques for mapping water depth and bottom features. Appl. Opt., 17(3), 379-383. http://doi.org/10.1364/AO.17.000379
Lyzenga, D. (1985). Shallow-water bathymetry using combined lidar and passive multispectral scanner data. Int. J. Remote Sens., 6(1), 115-125. https://www.tandfonline.com/doi/abs/10.1080/01431168508948428
Mavraeidopoulos, A., Navy, H. Pallikaris, A. Academy, H. N. & Oikonomou, E. (2017). Satellite derived bathymetry (SDB) and safety of navigation. Int. Hydrogra. Rev., 7-19. https://journals.lib.unb.ca/index.php/ihr/article/view/26290
Najhan, S., Mohd, M. & Rozaimi, H. (2017). Satellite-Derived Bathymetry: Accuracy assessment on depths derivation algorithm for shallow water area. Int. Arch. Photogramm., Remote Sens. Spat. Inform. Sci., 42, 159-164. https://doi.org/10.5194/isprs-archives-XLII-4-W5-159-2017
OIH. Organización Hidrográfica Internacional. (2008). Normas de la OHI para los Levantamientos Hidrográficos. S-44 (5th ed.). Francia. Bureau Hidrográfico Internacional. http://bathyswath.com/sites/default/files/documents/S-44_5S.pdf
Pacheco, A., Horta, J. Loureiro, C. & Ferreira, Ó. (2016). Retrieval of nearshore bathymetry from Landsat 8 images: A tool for coastal monitoring in shallow waters. Remote Sens. Environ, 159, 102-116. https://doi.org/10.1016/j.rse.2014.12.004
Pe’eri, S., Parrish, C. Azuike, C. & Armstrong, A. (2014). Satellite remote sensing as a reconnaissance tool for assessing nautical chart adequacy and completeness. Mar. Geod., 37(3), 37-41. https://doi.org/10.1080/01490419.2014.902880
Philpot, W. (1989). Bathymetric mapping with passive multispectral imagery. Appl. Opt., 28(8), 1569-1578. http://doi.org/10.1364/AO.28.001569
Pierini, O. & Rodríguez, A. (2014). Caracterización oceanográfica de la bahía de Solano. Boletín Científico CIOH., 32, 223-256. https://doi.org/10.26640/22159045.274
Polcyn, F. C., Brown, W. L. & Sattinger, I. J. (1970). The Measurement of Water Depth by Remote Sensing Techniques. EE. UU.: The Institute of Science and Technology, The University of Michigan. https://pdfs.semanticscholar.org/59b2/a818598554825c7923bc3d51edd64d443f1d.pdf
Politi, E., Paterson, S. K. Scarrott, R. Tuohy, E. Mahony, C. O. & Cámaro-garcía, W. C. A. (2019). Earth observation applications for coastal sustainability: potential and challenges for implementation. Anthropocene Coasts., 2(1), 306-329. https://doi.org/10.1139/anc-2018-0015
Pushparaj, J. & Hegde, A. V. (2016). Estimation of bathymetry along the coast of Mangaluru using Landsat-8 imagery. Int. J. Ocean Climate Syst., 8(2), 71-83. https://doi.org/10.1177/1759313116679672
Putri, J. C. A., Fuad, M. A. Z. & Asa´di, M. A. (2018). Bathymetry mapping using Landsat 8 multyspectral data of bangsring coastal area. Omni-Akuatika, 14(1), 54-61. https://doi.org/10.20884/1.oa.2018.14.1.368
Rocchio, L. E. P. (2016). Avoiding Rock Bottom: How Landsat Aids Nautical Charting. Landsat Sci., 71-77. https://landsat.gsfc.nasa.gov/wp-content/uploads/2016/08/Landsat_Improve_Life_Bathymetry.pdf
Setiawan, K., Adawiah, S. Marini, Y. & Winarso, G. (2017). Bathymetry data extraction analysis using Landsat 8 data. Int. J. Remote Sens. Earth Sci., 13(2), 79-86. https://doi.org/10.30536/j.ijreses.2016.v13.a2448
Stumpf, R. P., Holderied, K. & Sinclair, M. (2003). Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol. Oceanogr, 48, 54-556. https://doi.org/10.4319/lo.2003.48.1_part_2.0547
Tang, K. K. W. & Mahmud, M. R. (2018). Imagery-derived bathymetry in Strait of Johor’s turbid waters using multispectral images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 42, 139-145. https://doi.org/10.5194/isprs-archives-XLII-4-W9-139-2018
USGS. U. S. Geological Survey. (2017). Imágen Multiespectral Landsat 8 OLI, ID LC80100562017023LGN01. EE. UU.: Landsat Data Continuity Mission. https://earthexplorer.usgs.gov/
USGS. U. S. Geological Survey. (2018). Landsat 8 (L8) Data Users Handbook - Version 3.0. EE. UU.: USGS. https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/LSDS-1574_L8_Data_Users_Handbook.pdf
Vinayaraj, P., Raghavan, V. & Masumoto, S. (2016). Satellite-Derived Bathymetry using Adaptive Geographically Weighted Regression Model. Mar. Geod., 39(6), 458-478. http://doi.org/10.1080/01490419.2016.1245227
Vivas-Aguas, L. J., Espinosa, J. Sánchez, B. Cadavid, P. Bautista, M. Quintero, J…& Espinosa. (2012). Diagnóstico y Evaluación de la Calidad Ambiental Marina en el Caribe y Pacífico colombiano. Red de vigilancia para la conservación y protección de las aguas marinas y costeras de Colombia –REDCAM. Informe técnico 2011. Santa Marta: INVEMAR.
Warne, D. K. (1978). Landsat as an Aid in the Preparation of Hydrographic Charts. Photogramm Eng Remote Sensin., 44(8), 1011-1016.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Condições gerais
Revista Ciencias Marinas y Costeras por Universidad Nacionalestá sob uma licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 Costa Rica.
A revista é hospedada em repositórios de acesso aberto, tais como o Repositorio Institucional de la Universidad Nacional, em Repositorio Kimuk de Costa Rica y la Referencia.
A fonte editorial da revista deve ser reconhecida. Use o identificador doi da publicação para este fim.
Política de auto-arquivamento: A revista permite o auto-arquivamento de artigos em sua versão revisada, editada e aprovada pelo Conselho Editorial da Revista para que eles estejam disponíveis em Acesso Aberto através da Internet. Mais informações no link a seguir: https://v2.sherpa.ac.uk/id/publication/28915