No ritmo da maré: caracterização da paisagem acústica da área costeira de Punta Morales, Puntarenas, Costa Rica

Autores

DOI:

https://doi.org/10.15359/revmar.13-2.4

Palavras-chave:

marés, ecossistemas costeiros, ecoacústicas, geofonias, índices acústicos

Resumo

Nos ecossistemas costeiros, a geofonia é uma parte fundamental do ambiente acústico e o impacto das arrebentações em sua geomorfologia é um exemplo disso. Foi colocado um gravador Audiomoth em quatro locais em Punta Morales, Puntarenas, Costa Rica, de 22 de novembro a 18 de dezembro de 2020. Programou-se o registro de 60 segundos a cada 10 minutos durante 24 horas com o objetivo de caracterizar a paisagem acústica associada ao ciclo das marés da localidade. Das gravações obtidas, foram analisados: o Índice de Diferença Padronizada da Paisagem Sonora (NDSI), as Tecnofonias, a Entropia Acústica (TE) e o Nível de Pressão Sonora (SPL). Esses valores foram contrastados entre os locais por uma análise de meios aparados unidirecionais; foi feita uma correlação entre o SPL e o nível da maré em cada lugar e, finalmente, os valores foram comparados no mesmo ponto amostral entre a maré alta e a maré baixa. Foram encontradas diferenças em todas as comparações feitas; além disso, foi identificada uma correlação positiva em dois locais e observadas diferenças de SPL entre maré alta e maré baixa. O substrato e a vegetação de cada lugar poderiam influenciar essas diferenças. Da mesma forma, as arrebentações modificam significativamente a dinâmica acústica de alguns setores, o que poderia ter afetado a paisagem sonora desta área costeira.

Biografia do Autor

Ian Portuguez-Brenes, Universidad Nacional

Programa de Manejo de Recursos Naturales, Escuela de Ciencias Exactas y Naturales, Estatal a Distancia, Mercedes de Montes de Oca, San José, Heredia, Costa Rica.

Roberto Vargas-Masís, Universidad Estatal a Distancia

Laboratorio de Investigación e Innovación Tecnológica, Vicerrectoría de Investigación,

Héctor Perdomo-Velázquez, Universidad Nacional Autónoma de México

Centro de Estudios Mexicanos

Andrea García-Rojas, Universidad Nacional

Escuela de Ciencias Biológicas

Referências

Alfaro-Rojas, D., Portuguez-Brenes, I., Perdomo-Velázquez, H. & Vargas-Masís, R. (2020). Ruido ambiental en áreas verdes urbanas y periurbanas de una microcuenca en Heredia, Costa Rica. UNED Res. J., 12(2), 28-46. https://doi.org/10.22458/urj.v12i2.2846

Barber, J. R., Crooks, K. R. & Fristrup, K. M. (2010). The costs of chronic noise exposure for terrestrial organisms. Trends Ecol. & Evol., 25(3), 180-189. doi: https://10.1016/j.tree.2009.08.002

Best, D. J. & Roberts, D. E. (1975). Algorithm AS 89: the upper tail probabilities of Spearman's rho. J. R. Stat. Soc. Ser. C (Appl. Stat.), 24(3), 377-379. https://doi.org/10.2307/2347111

Blumstein, D. T., Mennill, D. J., Clemins, P., Girod, L., Yao, K., Patricelli, G., ... & Kirschel, A. N. (2011). Acoustic monitoring in terrestrial environments using microphone arrays: applications, technological considerations and prospectus. J. Appl. Ecol, 48(3), 758-767. https://doi.org/10.1111/j.1365-2664.2011.01993.x

Bormpoudakis, D., Sueur, J. & Pantis, J. D. (2013). Spatial heterogeneity of ambient sound at the habitat type level: ecological implications and applications. Landsc. Ecol., 28(3), 495-506. https://doi.org/10.1007/s10980-013-9849-1

Chesmore, D., Frommolt, K.-H., Wolff, D., Bardeli, R. & Huebner, S. (2008, May). Computational bioacoustics: New tools for assessing biological diversity. Paper presented in the Ninth meeting of the Conference of the Parties (COP 9), Germany.

Crawley, M. (2002). The R Book (2nd ed.). U.K.: John Wiley & Sons Ltd.

Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M. & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci., 4(5), 293-297. https://doi.org/10.1038/ngeo1123

Doser, J. W., Hannam, K. M. & Finley, A. O. (2020). Characterizing functional relationships between anthropogenic and biological sounds: a western New York state soundscape case study. Landsc. Ecol., 35(3), 689-707. https://doi.org/10.1007/s10980-020-00973-2

Eldridge, A., Guyot, P., Moscoso, P., Johnston, A., Eyre-Walker, Y. & Peck, M. (2018). Sounding out ecoacoustic metrics: Avian species richness is predicted by acoustic indices in temperate but not tropical habitats. Ecol. Indic., 95, 939-952. https://doi.org/10.1016/j.ecolind.2018.06.012

Espinoza, M. Á. L., Crespo, G. D. L. C. R., Junco, O. D. & Hernández, J. G. (2019). Los servicios ecosistémicos en manglares: beneficios a la resiliencia del ecosistema ante cambios climáticos, a la comunidad y su desarrollo local. REMCA, 2(2), 120-127.

Farina, A. (2014). Soundscape ecology: principles, patterns, methods and applications. Springer Science & Business Media. EE. UU.: Springer.

Farina, A., Eldridge, A. & Li, P. (2021). Ecoacoustics and Multispecies Semiosis: Naming, Semantics, Semiotic Characteristics, and Competencies. Biosemiotics, 14, 141–165. https://doi.org/10.1007/s12304-021-09402-6

Ferrini, F., Fini, A., Mori, J. & Gori, A. (2020). Role of vegetation as a mitigating factor in the urban context. Sustainability, 12(10), 42-47. https://doi.org/10.3390/su12104247

Gómez, W. E., Isaza, C. V. & Daza, J. M. (2018). Identifying disturbed habitats: A new method from acoustic indices. Ecol. Inform., 45, 16-25. https://doi.org/10.1016/j.ecoinf.2018.03.001

Han, X., Huang, X., Liang, H., Ma, S. & Gong, J. (2018). Analysis of the relationships between environmental noise and urban morphology. Environ. Pollut., 233, 755-763. https://doi.org/10.1016/j.envpol.2017.10.126

Hildebrand, J. A. (2009). Anthropogenic and natural sources of ambient noise in the ocean. Mar. Ecol. Prog. Ser., 395, 5-20. https://doi.org/10.3354/meps08353

Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika, 75(4), 800-802. https://doi.org/10.1093/biomet/75.4.800

Karjadi, E. A., Badiey, M., Kirby, J. T. & Bayindir, C. (2011). The effects of surface gravity waves on high-frequency acoustic propagation in shallow water. IEEE J. Ocean. Eng., 37(1), 112-121. https://doi.org/10.1109/JOE.2011.2168670

Kasten, E. P., Gage, S. H., Fox, J. & Joo, W. (2012). The remote environmental assessment laboratory's acoustic library: An archive for studying soundscape ecology. Ecol. Inform., 12, 50-67. https://doi.org/10.1016/j.ecoinf.2012.08.001

Ligges, U., Krey, S., Mersmann, O. & Schnackenberg, S. (2018). tuneR: analysis of music and speech. See https://CRAN. R-project. org/package= tuneR.

Mair, P. & Wilcox, R. (2020). Robust statistical methods in R using the WRS2 package. Behav. Res. Methods., 52(2), 464-488. https://doi.org/10.3758/s13428-019-01246-w

McCormick, M. I., Allan, B. J., Harding, H. & Simpson, S. D. (2018). Boat noise impacts risk assessment in a coral reef fish but effects depend on engine type. Sci. Rep., 8(1), 1-11. https://doi.org/10.1038/s41598-018-22104-3

Monczak, A., Mueller, C., Miller, M. E., Ji, Y., Borgianini, S. A. & Montie, E. W. (2019). Sound patterns of snapping shrimp, fish, and dolphins in an estuarine soundscape of the southeastern USA. Mar. Ecol. Prog. Ser., 609, 49-68. https://doi.org/10.3354/meps12813

Mullet, T. C., Gage, S. H., Morton, J. M. & Huettmann, F. (2016). Temporal and spatial variation of a winter soundscape in south-central Alaska. Landscape Ecol., 31(5), 1117-1137. https://doi.org/10.1007/s10980-015-0323-0

Parris, K. M. & Schneider, A. (2008). Impacts of traffic noise and traffic volume on birds of roadside habitats. Ecol. Soc. 14(1), 29. https://doi.org/10.5751/es-02761-140129

Pijanowski, B. C., Farina, A., Gage, S. H., Dumyahn, S. L. & Krause, B. L. (2011a). What is soundscape ecology? An introduction and overview of an emerging new science. Landsc. Ecol., 26(9), 1213-1232. https://doi.org/10.1007/s10980-011-9600-8

Pijanowski, B. C., Villanueva-Rivera, L. J., Dumyahn, S. L., Farina, A., Krause, B. L., Napoletano, B. M., ... & Pieretti, N. (2011b). Soundscape ecology: the science of sound in the landscape. BioScience, 61(3), 203-216. https://doi.org/10.1525/bio.2011.61.3.6

R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Radford, C. A., Stanley, J. A., Tindle, C. T., Montgomery, J. C. & Jeffs, A. G. (2010). Localized coastal habitats have distinct underwater sound signatures. Mar. Ecol. Prog. Ser., 401, 21-29. https://doi.org/10.3354/meps08451

Ramalle-Gómara, E. & De Llano, J. A. (2003). Utilización de métodos robustos en la estadística inferencial. Aten. Primaria, 32(3), 177–182. https://doi.org/10.1016/S0212-6567(03)79241-5

Ramírez-Alán, O. (2019). Sinax: Sound Index Analysis for Ecologist. R package. Versión 1.3. Disponible en: https://github.com/osoramirez/Sinax2

Ramírez, J. D. R., Montejo, G. D. L. & Guillermo, R. J. C. (2018). Manglares, desarrollo turístico y cambio climático en Playa del Carmen, corazón del caribe mexicano. Cuad. biodivers., (55), 28-40. https://doi.org/10.14198/cdbio.2018.55.03

Retamosa-Izaguirre M. I., Ramírez-Alán O. & De la O-Castro J. (2018). Acoustic indices applied to biodiversity monitoring in a Costa Rica dry tropical forest. JEA., 2(1), 1-1. https://doi.org/10.22261/JEA.TNW2NP

Silveira, J. A. H. & Hernández, C. T. (2017). Carbono azul, manglares y políticas públicas. Elementos para Pol. Públic. 1(1), 43-52.

Simpson, S. D., Radford, A. N., Holles, S., Ferarri, M. C., Chivers, D. P., McCormick, M. I. & Meekan, M. G. (2016). Small-Boat Noise Impacts Natural Settlement Behavior of Coral Reef Fish Larvae. In A. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II. Advances in Experimental Medicine and Biology (pp. 1041-1048). EE. UU.: Springer. https://doi.org/10.1007/978-1-4939-2981-8_129

Sueur, J., Aubin, T. & Simonis, C. (2008a). Seewave, a free modular tool for sound analysis and synthesis. Bioacoustics, 18(2), 213-226. https://doi.org/10.1080/09524622.2008.9753600

Sueur, J., Pavoine, S., Hamerlynck, O. & Duvail, S. (2008b). Rapid acoustic survey for biodiversity appraisal. PloS one., 3(12), e4065. https://doi.org/10.1371/journal.pone.0004065

Sueur, J., Farina, A., Gasc, A., Pieretti, N. & Pavoine, S. (2014). Acoustic indices for biodiversity assessment and landscape investigation. Acta. Acust. United Acust., 100(4), 772-781. https://doi.org/10.3813/AAA.918757

Verdugo, F. J. F., Hernández, C. A. & Pardo, D. B. (2007). Ecosistemas Acuáticos costeros: Importancia, retos y prioridades para su conservación. En O. Sánchez, M. Herzig, E. Peters, R. Márquez & L. Zambrano (Eds.), Perspectivas sobre conservación de ecosistemas acuáticos en México (pp. 147-166). México: Everest Mexicana.

Welch, B. L. (1951). On the comparison of several mean values: an alternative approach. Biometrika, 38(3/4), 330-336. https://doi.org/10.2307/2332579

Wenz, G. M. (1962). Acoustic ambient noise in the ocean: Spectra and sources. J. Acoust. Soc. Am., 34(12), 1936-1956. https://doi.org/10.1121/1.1909155

Villanueva-Rivera, L. J. & Pijanowski, B. C. (2018). Package ‘soundecology’. R package version, 1(3), 3. https://CRAN.R-project.org/package=soundecology

Yang, K. L. Center for Conservation Bioacoustics. (2019). Raven Pro: Interactive Sound Analysis Software (Version 1.6.1) [Computer software]. EE: UU.: The Cornell Lab of Ornithology. http://ravensoundsoftware.com/

Publicado

2021-07-27

Como Citar

Portuguez-Brenes, I., Vargas-Masís, R., Perdomo-Velázquez, H., & García-Rojas, A. (2021). No ritmo da maré: caracterização da paisagem acústica da área costeira de Punta Morales, Puntarenas, Costa Rica. Revista Ciencias Marinas Y Costeras, 49-68. https://doi.org/10.15359/revmar.13-2.4

Edição

Seção

Artigos científicos

Como Citar

Portuguez-Brenes, I., Vargas-Masís, R., Perdomo-Velázquez, H., & García-Rojas, A. (2021). No ritmo da maré: caracterização da paisagem acústica da área costeira de Punta Morales, Puntarenas, Costa Rica. Revista Ciencias Marinas Y Costeras, 49-68. https://doi.org/10.15359/revmar.13-2.4

Comentarios (ver términos de uso)