Luz natural vs. luz artificial. Efeitos da poluição luminosa na bioluminescência de dinoflagelados Pyrocystis lunula
DOI:
https://doi.org/10.15359/revmar.16-2.5Palavras-chave:
bioluminiscencia, color, contaminación lumínica, fuente de luz, intensidadResumo
Embora existam milhares de espécies bioluminescentes marinhas, muito pouco se sabe sobre os efeitos que a luz artificial noturna pode ter sobre esses organismos, especialmente aqueles que vivem perto da superfície do mar, como os dinoflagelados, cujo relógio circadiano impulsiona sua fisiologia rítmica, como a fotossíntese e o metabolismo do nitrogênio, que ajuda a regular o ciclo marinho do carbono e do nitrogênio, respectivamente. O objetivo desta pesquisa é preencher parcialmente essa lacuna de conhecimento e investigar os efeitos da poluição luminosa no dinoflagelado bioluminescente Pyrocystis lunula por meio de uma série de experimentos com o objetivo de verificar as consequências decorrentes de mudanças no ciclo dia-noite (ciclo circadiano) e exposição a diferentes tipos de fonte luminosa, cores e intensidades de luz. A variável resposta foi a Bioluminescência Total Corrigida de Algas, registrada com uma câmera digital e depois calculada com a software ImageJ. Os resultados mostram que os dinoflagelados não parecem ser suscetíveis a pequenas mudanças no ciclo luz-escuridão, mas uma ausência total de luz e escuridão leva a uma inibição drástica em sua bioluminescência, especialmente sob LEDs brancos ou luz artificial incandescente e com uma intensidade de luz de 100 lux ou mais.
Referências
Arroyo, H. L., Abascal, A., Degen, T., Aubé, M., Espey, B. R., Gyuk, G., ... & Kyba, C. C. M. (2024). Monitoring, trends and impacts of light pollution. Nat. Rev. Earth Environ., 5, 417-430. https://doi.org/10.1038/s43017-024-00555-9
Bhovichitra, M. & Swift, E. (1977). Light and dark uptake of nitrate and ammonium by large oceanic dinoflagellates: Pyrocystis lunula, Pyrocystis fusiformis, and Dissodinium lunula. Limnol. Oceanogr., 22(1), 73-83. https://doi.org/10.4319/lo.1977.22.1.0073
Bialevich, V., Zachleder, V. & Bišova, K. (2022). The Effect of Variable Light Source and Light Intensity on the Growth of Three Algal Species. Cells, 11(8), 1293. https://doi.org/10.3390/cells11081293
Claes, J. M., Haddock, S. H. D., Coubris, C. & Mallefet, J. (2024). Systematic Distribution of Bioluminescence in Marine Animals: A Species-Level Inventory. Life, 14(4), 432. https://doi.org/10.3390/life14040432
Cohen, N. R., McIlvin, M. R., Moran, D. M., Held, N. A., Saunders, J. K., Hawco, N. J., ... & Saito, M. A. (2021). Dinoflagellates alter their carbon and nutrient metabolic strategies across environmental gradients in the central Pacific Ocean. Nat. Microbiol., 6(2), 173-186. https://doi.org/10.1038/s41564-020-00814-7
Colepicolo, P., Roenneberg, T., Morse, D., Taylor, W. & Hastings, J. W. (1993). Circadian regulation of bioluminescence in the dinoflagellate Pyrocystis lunula. J. Phycol., 29(2), 173-179. https://doi.org/10.1111/j.0022-3646.1993.00173.x
Corfitsen, M. T. (1996). Enhanced tiredness among young impaired male nighttime drivers. Accid. Anal. Prev., 28(2), 155-162. https://doi.org/10.1016/0001-4575(95)00042-9
Costin, K. J. & Boulton, A. M. (2016). A field experiment on the effect of introduced light pollution on fireflies (Coleoptera: Lampyridae) in the Piedmont Region of Maryland. The Coleopt. Bull., 70(1), 84-86. https://doi.org/10.1649/072.070.0110
Craig, J. M., Klerks, P. L., Heimann, K. & Waits, J. L. (2003). Effects of salinity, pH and temperature on the re-establishment of bioluminescence and copper or SDS toxicity in the marine dinoflagellate Pyrocystis lunula using bioluminescence as an endpoint. Environ. Pollut., 125(2), 267-275. https://doi.org/10.1016/S0269-7491(03)00059-9
Davies, T. W., Duffy, J. P., Bennie, J. & Gaston, K. J. (2014). The nature, extent, and ecological implications of marine light pollution. Front. Ecol. Environ., 12(6), 347-355. https://doi.org/10.1890/130281
Davies, T. W. & Smith, T. (2018). Why artificial light at night should be a focus for global change research in the 21st century. Glob. Chang. Biol., 24(3), 872-882. https://doi.org/10.1111/gcb.13927
Depledge, M., Gordard-Codding, C. A. J. & Bowen, R. E. (2010). Light pollution in the sea. Mar. Pollut., 60(9), 1383-1385. https://doi.org/10.1016/j.marpolbul.2010.08.002
Di Bari, D. (2023). Effects of artificial light at night on the mobility of the sea urchin Paracentrotus lividus. Mar. Fish. Sci., 37(1), 41-52. https://doi.org/10.47193/mafis.3712024010106
Diamantopoulou, C., Christoforou, E., Dominoni, D. M., Kaiserli, E., Czyzewski, J., Mirzai, N. & Spatharis, S. (2021). Wavelength-dependent effects of artificial light at night on phytoplankton growth and community structure. Proc. R. Soc. B., 288, 20210525. https://doi.org/10.1098/rspb.2021.0525
Dunlap, J. C. & Hastings, J. W. (1981). The biological clock in Gonyaulax control luciferase activity by regulating turnover. J. Biol. Chem., 256(20), 10509-10518. https://doi.org/10.1016/S0021-9258(19)68651-5
Enright, J. T. (1977). Copepods in a hurry sustained high speed upward migration, Limnol. Oceanogr., 22(1), 118-125. https://doi.org/10.4319/LO.1977.22.1.0118
Esaias, W. E. & Curl, H. C. (1972). Effect of dinoflagellate bioluminescence on copepod ingestion rates. Limn. Oceanogr., 17(6), 901–906. https://doi.org/10.4319/lo.1972.17.6.0901
Fajardo, C., De Donato, C., Rodulfo, H., Martínez-Rodríguez, G., Costas, B., Mancera, J. M. & Fernández-Acero, F. J. (2020). New Perspectives Related to the Bioluminescent System in Dinoflagellates: Pyrocystis lunula, a Case Study. Int. J. Mol. Sci., 21(5), 1784. https://doi.org/10.3390/ijms21051784
Falchi, F., Cinzano, P., Elvidge, C. D., Keith, D. M. & Haim, A. (2011). Limiting the impact of light pollution on human health, environment and stellar visibility. J. Environ. Manage., 92(10), 2714-2722. https://doi.org/10.1016/j.jenvman.2011.06.029
Falchi, F., Cinzano, P., Duriscoe, D., Kyba, C. C., Elvidge, C. D., Baugh, K., ... & Furgoni, R. (2016). The new world atlas of artificial night sky brightness. Sci. Adv., 2(6), e1600377. https://doi.org/10.1126/sciadv.1600377
Firebaugh, A. & Haynes, K. J. (2019). Light pollution may create demographic traps for nocturnal insects. Basic Appl. Ecol., 34, 118-125. https://doi.org/10.1016/j.baae.2018.07.005
Fobert, E. K., Burke da Silva, K. & Swearer, S. E. (2019). Artificial light at night causes reproductive failure in clownfish. Biol. Lett., 15(7), 20190272. https://doi.org/10.1098/rsbl.2019.0272
Garratt, M. J., Jenkins, S. R. & Davies, T. W. (2019). Mapping the consequences of artificial light at night for intertidal ecosystems. Sci. Total Environ., 691, 760-768. https://doi.org/10.1016/j.scitotenv.2019.07.156
Gaston, K. J., Davies, T. W., Bennie J. & Hopkins J. (2012). Reducing the ecological consequences of nighttime light pollution: Options and developments. J. Appl. Ecol. 49(6), 1256-1266. https://doi.org/10.1111/j.1365-2664.2012.02212.x
Gaston, K. J., Gaston, S., Bennie, J. & Hopkins, J. (2015). Benefits and costs of artificial nighttime lighting of the environment. Environ. Rev., 23(1), 14-23. https://doi.org/10.1139/er-2014-0041
Guillard, R. L. L. (1975). Culture of phytoplankton for feeding marine invertebrates. In W. L. Smith & M. H. Chanley (Eds.), Culture of Marine Invertebrate Animals (pp. 29-60). USA: Springer.
Haddock, S. H. D., Moline, M. A. & Case, J. F. (2010). Bioluminescence in the Sea. Annu. Rev. Mar. Sci., 2(1), 443-493. https://doi.org/10.1146/annurev-marine-120308-081028
Hanley, K. A. & Widder, E. A. (2017). Bioluminescence in Dinoflagellates: Evidence that the Adaptive Value of Bioluminescence in Dinoflagellates is Concentration Dependent. Photochem. Photobiol., 93(2), 519-530. https://doi.org/10.1111/php.12713
Hastings, J. W. (2007). The Gonyaulax Clock at 50: Translational Control of Circadian Expression. Cold Spring Harb. Symp. Quant. Biol., 72(1), 141-144. https://doi.org/10.1101/sqb.2007.72.026
Hastings, J. W. (2013). Circadian rhythms in dinoflagellates: What is the purpose of synthesis and destruction of proteins? Microorganisms, 1(1), 26-32. https://doi.org/10.3390/microorganisms1010026
Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., Dennison, W. C., ... & Suddleson, M. (2008). Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae, 8(1), 3-13. https://doi.org/10.1016/j.hal.2008.08.006
Hickman, A. E., Holligan, P. M., Moore, C. M., Sharples, J., Krivtsov, V. & Palmer, M. R. (2009). Distribution and chromatic adaptation of phytoplankton within a shelf sea thermocline. Limn. Oceanogr., 54(2), 525-536. https://doi.org/10.4319/lo.2009.54.2.0525
Hölker, F., Wolter, C., Perkin, E. K. & Tockner, K. (2010a). Light pollution as a biodiversity threat. Trends Ecol. Evol., 25(12), 681-682. https://doi.org/10.1016/j.tree.2010.09.007
Hölker F., Moss R., Griefahn B., Kloas W., Voigt C. C., Henckel D., ... & Tockner K. (2010b). The dark side of light: a transdisciplinary research agenda for light pollution policy. Ecol. Soc., 15(4), 13. http://doi.org/10.5751/ES-03685-150413
International Energy Agency. (2006). Light’s labour’s lost: policies for energy efficient lighting. France. OECD/IEA. https://doi.org/10.1787/19900694
Jadhav, D. B., Sriramkumar, Y. & Roy, S. (2022). The enigmatic clock of dinoflagellates, is it unique? Front. Microbiol., 13, 1004074. https://doi.org/10.3389%2Ffmicb.2022.1004074
Jeong, H. J., Lee, K. H., Yoo, Y. D., Kang, N. S., Song, J. Y., Kim, T. H., ... & Potvin, E. (2018). Effects of light intensity, temperature, and salinity on the growth and ingestion rates of the red-tide mixotrophic dinoflagellate Paragymnodinium shiwhaense. Harmful Algae, 80, 46-54. https://doi.org/10.1016/j.hal.2018.09.005
Johnson, C. H., Roeber, J. & Hastings, J. W. (1984). Circadian changes in enzyme concentration account from rhythm of enzyme activity in Gonyaulax. Science, 223(4643), 1428-1430. https://doi.org/10.1126/science.223.4643.1428
Kaniewska, P., Alon, S., Kariko-Lampert, S., Hoegh-Guldberg, O. & Levy, O. (2015). Signaling cascades and the importance of moonlight in coral broadcast mass spawning. eLife, 4, e09991. https://doi.org/10.7554/elife.09991
Kivelä, L., Elgert, C., Lehtonen, T. K. & Candolin, U. (2023). The color of artificial light affects mate attraction in the common glow-worm. Sci. Total Environ., 857(3), 159451. https://doi.org/10.1016/j.scitotenv.2022.159451
Knaust, R., Urbig, T., Li, L., Taylor, W. & Hastings, J. W. (1998). The circadian rhythm of bioluminescence in Pyrocystis is not due to differences in the amount of luciferase: A comparative study of three bioluminescent marine dinoflagellates. J. Phycol., 34(1), 167-172. https://doi.org/10.1046/j.1529-8817.1998.340167.x
Lambrechts, D., Roeffaers, M., Goossens, K., Hofkens, J., Vande Velte, G., Van de Putte, T., ... & Van Oosterwyck, H. (2014). A causal relation between bioluminescence and oxygen to quantify the cell niche. PLoS One, 19, 9(5), e97572. https://doi.org/10.1371/journal.pone.0097572
Latz, M. I., Juhl, A. R., Ahmed, A. M., Elghobashi, S. E. & Rohr, J. (2004). Hydrodynamic stimulation of dinoflagellate bioluminescence: A computational and experimental study. J. Exp. Biol., 207(11), 1941-1951. https://doi.org/10.1242/jeb.00973
Latz, M. I. & Rohr, J. (2005). Glowing with the flow. Opt. Photonics News, 16(10), 40-45. http://doi.org/10.1364/OPN.16.10.000040
Lindström, J., Grebner, W., Rigby, K. & Selander, E. (2017). Effects of predator lipids on dinoflagellate defense mechanisms – increased bioluminescence capacity. Sci. Rep., 7(1), 13104. https://doi.org/10.1038/s41598-017-13293-4
Love, A. C. & Prescher, J. A. (2020). Seeing (and Using) the Light: Recent Developments in Bioluminescence Technology. Cell Chem. Biol., 27(8), 904-920. https://doi.org/10.1016/j.chembiol.2020.07.022
Luarte, T., Bonta, C. C., Silva-Rodríguez, E. A., Quijón, P. A., Miranda, C., Farias, A. A. & Duarte C. (2016). Light pollution reduces activity, food consumption and growth rates in a sandy beach invertebrate. Environ. Pollut., 218, 1147-1153. https://doi.org/10.1016/j.envpol.2016.08.068
Ludvigsen, M., Berge, J., Geoffroy, M., Cohen, J. H., De La Torre, P. R., Nornes, S. M., ... & Johnsen, G. (2018). Use of an Autonomous Surface Vehicle reveals small-scale diel vertical migrations of zooplankton and susceptibility to light pollution under low solar irradiance. Sci. Adv., 4(1), eaap9887. https://doi.org/10.1126/sciadv.aap9887
Luijendijk, A., Hagenaars, G., Raasinghe, R., Baart, F., Donchyts, G. & Aarninkhof, S. (2018). The State of the World’s Beaches. Sci. Rep., 8(1), 6641. https://doi.org/10.1038/s41598-018-24630-6
Mandal, G., Bauri, J. & Choudhary, R. B. (2024). Conjugated polymeric nanocomposite-based light-generating active materials for OLED applications: A review. Mater. Sci. Eng. B, 303, 117271. https://doi.org/10.1016/j.mseb.2024.117271
Manríquez, P. H., Jara, M. E., González, C. P., Seguel, M., Quijón, P. A., Widdicombe, S., ... & Duarte, C. (2021). Effects of artificial light at night and predation cues on foraging and predator avoidance in the keystone inshore mollusc Concholepas concholepas. Environ. Pollut., 280, 116895. https://doi.org/10.1016/j.envpol.2021.116895
Morin, J. G. (1983). Coastal bioluminescence: patterns and functions. Bull. Mar. Sci., 33(4), 787-817.
Nemade, L. P. (2023). Review on Thermal Analysis of LED Heat Power Dissipation and Efficiency Analysis. Int. J. Res. Appl. Sci. Eng. Technol., 11(11), 1284-1287. https://doi.org/10.22214/ijraset.2023.56685
Neun, S., Hintz, N. H., Schröder, M. & Striebel, M. (2022). Phytoplankton Response to Different Light Colors and Fluctuation Frequencies. Front. Mar. Sci., 9, 824624. https://doi.org/10.3389/fmars.2022.824624
Owens, A. C. S. & Lewis, S. M. (2021). Effects of artificial light on growth, development, and dispersal of two North American fireflies (Coleoptera: Lampyridae). J. Insect Physiol., 130, 104200. https://doi.org/10.1016/j.jinsphys.2021.104200
Owens, A. C. S., Van der Broeck, M., De Cock, R. & Lewis, S. M. (2022). Behavioral responses of bioluminescent fireflies to artificial light at night. Front. Ecol. Evol., 10, 946640. https://doi.org/10.3389/fevo.2022.946640
Park, S. A., Jeong, H. J., Ok, J. H., Kang, H. C., You, J. H., Eom, S. H., ... & Lee, M. J. (2024). Effect of salinity on the bioluminescence intensity of the heterotrophic dinoflagellates Noctiluca scintillans and Polykrikos kofoidii and the autotrophic dinoflagellate Alexandrium mediterraneum. Mar. Biol., 171, 126. https://doi.org/10.1007/s00227-024-04440-3
Price, J. T., Drye, B., Domangue, R. J. & Paladino, F. V. (2018). Exploring the role of artificial lighting in loggerhead turtle (Caretta caretta) nest-site selection and hatchling disorientation. Herpetol. Conserv. Biol., 13(2), 415-422.
Rabha, M. M., Sharma, U. & Barua, A. G. (2021). Light from a firefly at temperatures considerably higher and lower than normal. Sci. Rep., 11, 12498. https://doi.org/10.1038/s41598-021-91839-3
Ritchie, R. J. & Sma-Air, S. (2023). Microalgae grown under different light sources. J. Appl. Phycol., 35(2), 1-16. https://doi.org/10.1007/s10811-023-02917-0
Rodríguez, A., Dann, P. & Chiaradia, A. (2017). Reducing light-induced mortality of seabirds: High pressure sodium lights decrease the fatal attraction of shearwaters. J. Nat. Conserv., 39, 68-72. https://doi.org/10.1016/j.jnc.2017.07.001
Roenneberg, T. & Morse, D. (1993). Two circadian oscillators in one cell. Nature, 362(6418), 362-364. https://doi.org/10.1038/362362a0
Sathish, K., Saraswat, S. & Anusha, B. S. (2023). Light pollution and the impacts on biodiversity: the dark side of light. Biodiversity, 24(4), 194-199. https://doi.org/10.1080/14888386.2023.2244920
Satthong, S., Saego, K., Kitrungloadjanaporn, P., Nuttavut, N., Amornsamankul, S. & Triampo, W. (2019). Modeling the effects of light sources on the growth of algae. Adv. Differ. Equ., 170(1). 1-6. https://doi.org/10.1186/s13662-019-2112-6
Sherr, E. B. & Sherr B. F. (2007). Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea. Mar. Ecol. Prog. Ser., 352, 187-197. https://doi.org/10.3354/meps07161
Stomp, M., van Dijk, M. A., van Overzee, H. M. J., Wortel, M. T., Sigon, C. A. M., Egas, M., … & Huisman, J. (2008). The timescale of phenotypic plasticity and its impact on competition in fluctuating environments. Am. Nat., 172(8), 169-185. https://doi.org/10.1086/591680
Swift, E. & Meunier, V. (1976). Effects of light intensity on division rate, stimulable bioluminescence and cell size of the oceanic dinoflagellates Dissodinium lunula, Pyrocystis fusiformis and P. noctiluca. J. Phycol., 12(1), 14-22. https://doi.org/10.1111/j.1529-8817.1976.tb02819.x
Talanda, J., Maszczyk, P., Babkiewicz, E., Rutkowska, K. & Ślusarczyk, M. (2022). The short-term effects of planktivorous fish foraging in the presence of artificial light at night on lake zooplankton. J. Plankton Res., 44(6), 942-946. https://doi.org/10.1093/plankt/fbac046
Valiadi, M. & Iglesias-Rodríguez, D. (2013). Understanding Bioluminescence in Dinoflagellates – How Far Have We Come? Microorganisms, 1(1), 3-25. https://doi.org/10.3390/microorganisms1010003
Vitaterna, M. H., Takahashi, J. S. & Turek, F. W. (2001). Overview of Circadian Rhythms. Alcohol Res. Health, 25(2), 85-93.
Wang, L. (2018). Microbial control of the carbon cycle in the ocean. Natl. Sci. Rev., 5(2), 287-291. https://doi.org/10.1093/nsr/nwy023
Watanabe, Y. & Tanaka, Y. (2011). Bioluminescence-based imaging technique for pressure measurement in water. Exp. Fluids, 51, 225-236. https://doi.org/10.1007/s00348-011-1043-0
Zou, S. J., Shen, Y., Xie, F. M., Chen, J., Li, Y. & Tang, J. (2020). Recent Advances in Organic Light-Emitting Diodes: Toward Smart Lighting and Displays. Mater. Chem. Front., 4(3), 788-820. https://doi.org/10.1039/C9QM00716D
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Condições gerais
Revista Ciencias Marinas y Costeras por Universidad Nacionalestá sob uma licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 Costa Rica.
A revista é hospedada em repositórios de acesso aberto, tais como o Repositorio Institucional de la Universidad Nacional, em Repositorio Kimuk de Costa Rica y la Referencia.
A fonte editorial da revista deve ser reconhecida. Use o identificador doi da publicação para este fim.
Política de auto-arquivamento: A revista permite o auto-arquivamento de artigos em sua versão revisada, editada e aprovada pelo Conselho Editorial da Revista para que eles estejam disponíveis em Acesso Aberto através da Internet. Mais informações no link a seguir: https://v2.sherpa.ac.uk/id/publication/28915