Biofuels production in Costa Rica using hydrothermal liquefaction of biomass: preliminary estimation of its potential and carbon footprint

Authors

DOI:

https://doi.org/10.15359/ru.38-1.23

Keywords:

biofuels, biomass, carbon footprint, hydrothermal liquefaction, residues

Abstract

[Objective] Estimate the production potential of biofuels from the hydrothermal liquefaction (HTL) of biomass residues in Costa Rica and their respective carbon footprint. [Methodology] The generation potential of biomass residues suitable to produce biofuels through the HTL process was estimated using reports from different institutions such as the Ministry of Agriculture and Livestock, the Chamber of Poultry Farmers, and the National Water Company. In addition, using mathematical models that predict biocrude yield based on the type of biomass used, the biocrude production potential was estimated, as well as its respective upgrade to biodiesel and its co-products (biogasoline and biobunker). These results were compared with the current fuel consumption in Costa Rica. Finally, the carbon footprint for the production process of these biofuels was calculated using ISO 14067 standard. [Results] Under the assumptions of this study, it was found that Costa Rica has the potential to produce biocrude, biodiesel, biogasoline, and biobunker, amounting to 1,383,299 tons/year, 635,788 tons/year, 295,336 tons/year, and 70,140 tons/year, respectively. In addition, it was estimated that the carbon footprints associated with the production of biodiesel, biogasoline, and biobunker are 14.57 gCO2eq/MJ, 13.88 gCO2eq/MJ, and 13.33 gCO2eq/MJ, respectively.  [Conclusions] Under the assumptions of this study, it was concluded that Costa Rica has a potential replacement of fossil fuels of 71%, 43%, and 76% for biodiesel, biogasoline, and biobunker, respectively. Also, it was estimated that with this technology (HTL), the carbon footprint could be reduced by 18%, 36%, and 6% when using biodiesel, biogasoline, and biobunker, respectively, instead of the corresponding fossil fuels.

References

Ahamed, T. S., Anto, S., Mathimani, T., Brindhadevi, K., & Pugazhendhi, A. (2021). Upgrading of bio-oil from thermochemical conversion of various biomass–Mechanism, challenges and opportunities. Fuel, 287, Article 119329. https://doi.org/10.1016/j.fuel.2020.119329

Aierzhati, A., Stablein, M. J., Wu, N. E., Kuo, C.-T., Si, B., Kang, X., & Zhang, Y. (2019). Experimental and model enhancement of food waste hydrothermal liquefaction with combined effects of biochemical composition and reaction conditions. Bioresource Technology, 284, 139-147. https://doi.org/10.1016/j.biortech.2019.03.076

Baloch, H. A., Nizamuddin, S., Siddiqui, M. T. H., Riaz, S., Jatoi, A. S., Dumbre, D. K., Mubarak, N. M., Srinivasan, M. P., & Griffin, G. J. (2018). Recent advances in production and upgrading of bio-oil from biomass: A critical overview. Journal of Environmental Chemical Engineering, 6(4), 5101-5118. https://doi.org/10.1016/j.jece.2018.07.050

Biller, P., & Ross, A. B. (2011). Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresource Technology, 102(1), 215-225. https://doi.org/10.1016/j.biortech.2010.06.028

Bouillot, B. (2021). Choice of a thermodynamic model and simulation. In Introduction to thermodynamic methods for process engineering. https://www.emse.fr/~bouillot/poly/thermo_eng.pdf

Cao, L., Zhang, C., Chen, H., Tsang, D. C. W., Luo, G., Zhang, S., & Chen, J. (2017). Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects. Bioresource Technology, 245, 1184-1193. https://doi.org/10.1016/j.biortech.2017.08.196

Castro Vega, A. A. (2011). Estudio de la naturaleza química de biocrudos obtenidos mediante licuefacción hidrotérmica de biomasa lignocelulósica. Universidad Nacional de Colombia.

Chacón, L., Coto, O., & Flores, M. (2018). Actualización de la encuesta de biomasa como insumo para su incorporación en la matriz energética de Costa Rica. EMA Energía Medio Ambiente y Desarrollo SA

Cooney, G., Jamieson, M., Marriott, J., Bergerson, J., Brandt, A., & Skone, T. J. (2017). Updating the US life cycle GHG petroleum baseline to 2014 with projections to 2040 using open-source engineering-based models. Environmental Science & Technology, 51(2), 977-987. https://doi.org/10.1021/acs.est.6b02819

Crespo-Delgado, A. (2022). Obtención de biocrudo a partir de un alga invasora mediante licuefacción hidrotérmica. [(Tesis de Maestría)]. Universidad de Cádiz.

Déniel, M., Haarlemmer, G., Roubaud, A., Weiss-Hortala, E., & Fages, J. (2017). Modelling and predictive study of hydrothermal liquefaction: application to food processing residues. Waste and Biomass Valorization, 8(6), 2087-2107. https://doi.org/10.1007/s12649-016-9726-7

Dimitriadis, A., & Bezergianni, S. (2017). Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review. Renewable and Sustainable Energy Reviews, 68, 113-125. https://doi.org/10.1016/j.rser.2016.09.120

Elgowainy, A., Han, J., Cai, H., Wang, M., Forman, G. S., & DiVita, V. B. (2014). Energy efficiency and greenhouse gas emission intensity of petroleum products at US refineries. Environmental Science & Technology, 48(13), 7612-7624. https://doi.org/10.1021/es5010347

Escalente-Castro, M. (2021). Evaluación de la producción del biocrudo obtenido de la licuefacción hidrotérmica de residuos de pinzote de banano, utilizando níquel soportado sobre sílica-alúmina e hidróxido de sodio como catalizadores [(Tesis de licenciatura)]. Universidad de Costa Rica.

Hansen, S., Mirkouei, A., & Díaz, L. A. (2020). A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels. Renewable and Sustainable Energy Reviews, 118, 109548. https://doi.org/10.1016/j.rser.2019.109548

Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource Technology, 262, 310-318. https://doi.org/10.1016/j.biortech.2018.04.099

Hietala, D. C., Koss, C. K., Narwani, A., Lashaway, A. R., Godwin, C. M., Cardinale, B. J., & Savage, P. E. (2017). Influence of biodiversity, biochemical composition, and species identity on the quality of biomass and biocrude oil produced via hydrothermal liquefaction. Algal Research, 26, 203-214. https://doi.org/10.1016/j.algal.2017.07.020

Intergovernmental Panel on Climate Change. (2007). What is the Greenhouse Effect? IPCC Fourth Assessment Report: Climate Change 2007. https://archive.ipcc.ch/publications_and_data/ar4/wg1/en/faq-1-3.html .

Junta de Castilla y León. (n. d.). El recorrido de la energía en Castilla y León. https://energia.jcyl.es/web/es/biblioteca/productos-destilacion-petroleo-crudo.html.

Kumar, R., & Strezov, V. (2021). Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products. Renewable and Sustainable Energy Reviews, 135, 110152. https://doi.org/10.1016/j.rser.2020.110152

Leow, S., Witter, J. R., Vardon, D. R., Sharma, B. K., Guest, J. S., & Strathmann, T. J. (2015). Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition. Green Chemistry, 17(6), 3584-3599. https://doi.org/10.1039/C5GC00574D

Li, Y., Leow, S., Fedders, A. C., Sharma, B. K., Guest, J. S., & Strathmann, T. J. (2017). Quantitative multiphase model for hydrothermal liquefaction of algal biomass. Green Chemistry, 19(4), 1163-1174. https://doi.org/10.1039/C6GC03294J

Lu, J., Liu, Z., Zhang, Y., & Savage, P. E. (2018). Synergistic and antagonistic interactions during hydrothermal liquefaction of soybean oil, soy protein, cellulose, xylose, and lignin. ACS Sustainable Chemistry & Engineering, 6(11), 14501-14509. https://doi.org/10.1021/acssuschemeng.8b03156

Martín Gil, J. (2009). El futuro de los biocombustibles: biorrefinerías integradas: Lección inagural del curso académico 2009-2010.

Matayeva, A., Basile, F., Cavani, F., Bianchi, D., & Chiaberge, S. (2019). Development of Upgraded Bio-Oil Via Liquefaction and Pyrolysis. Studies in Surface Science and Catalysis, 178, 231-256. https://doi.org/10.1016/B978-0-444-64127-4.00012-4

Ministerio de Ambiente y Energía de Costa Rica. (2015). VII Plan Nacional de Energía 2015-2030. https://minae.go.cr/recursos/2015/pdf/VII-PNE.pdf.

Ministerio del Medio Ambiente de Chile. (2021). Huella de carbono.

Naciones Unidas. (2019). II Informe Bienal de Actualización ante la Convención Marco de las Naciones Unidas sobre el Cambio Climático. https://unfccc.int/sites/default/files/resource/IBA-2019.pdf

Palomino, A., Montenegro-Ruíz, L. C., & Godoy-Silva, R. D. (2019). Evaluation of yield-predictive models of biocrude from hydrothermal liquefaction of microalgae. Algal Research, 44, 101669. https://doi.org/10.1016/j.algal.2019.101669

Perkins, G., Batalha, N., Kumar, A., Bhaskar, T., & Konarova, M. (2019). Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes. Renewable and Sustainable Energy Reviews, 115, Article 109400. https://doi.org/10.1016/j.rser.2019.109400

Programa de las Naciones Unidas para el Medio Ambiente. (2012). Conversión de residuos agrícolas orgánicos en fuente de energía. Centro Internacional de Tecnología Ambiental.

Ramírez, J. A., Brown, R. J., & Rainey, T. J. (2015). A review of hydrothermal liquefaction bio-crude properties and prospects for upgrading to transportation fuels. Energies, 8(7), 6765-6794. https://doi.org/10.3390/en8076765

Ramos, P. M., & Gil, J. M. (2017). Biorrefinerías basadas en explotaciones agropecuarias y forestales. Departamento de Ciencias Agrarias y del Medio Ambiente, Universidad de Zaragoza.

Refinadora Costarricense de Petróleo. (2020). Comercialización y ventas. https://www.recope.go.cr/wp-content/uploads/2020/Memoria-2020/cadena-valor-comercializacion-ventas.html.

Sanna, A., & Abd Rahman, N. A. (2015). Conversion of Microalgae Bio-oil into Bio-diesel. In Algal Biorefineries (pp. 493-510). Springer. https://doi.org/10.1007/978-3-319-20200-6_16

Santamaría-Chinchilla, L. (2022). Producción de un biocrudo mediante licuefacción hidrotérmica usando residuos de broza de café como biomasa, pretratada mediante ozonólisis. [(Tesis de licenciatura)]. Universidad de Costa Rica.

Shakya, R., Adhikari, S., Mahadevan, R., Shanmugam, S. R., Nam, H., & Dempster, T. A. (2017). Influence of biochemical composition during hydrothermal liquefaction of algae on product yields and fuel properties. Bioresource Technology, 243, 1112-1120. https://doi.org/10.1016/j.biortech.2017.07.046

Sheng, L., Wang, X., & Yang, X. (2018). Prediction model of biocrude yield and nitrogen heterocyclic compounds analysis by hydrothermal liquefaction of microalgae with model compounds. Bioresource Technology, 247, 14-20. https://doi.org/10.1016/j.biortech.2017.08.011

Snowden-Swan, L. J., Zhu, Y., Jones, S. B., Elliott, D. C., Schmidt, A. J., Hallen, R. T., Billing, J. M., Hart, T. R., Fox, S. P., & Maupin, G. D. (2016). Hydrothermal liquefaction and upgrading of municipal wastewater treatment plant sludge: a preliminary techno-economic analysis, rev. 1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). https://doi.org/10.2172/1327165

Teri, G., Luo, L., & Savage, P. E. (2014). Hydrothermal treatment of protein, polysaccharide, and lipids alone and in mixtures. Energy & Fuels, 28(12), 7501-7509. https://doi.org/10.1021/ef501760d

Tews, I. J., Zhu, Y., Drennan, C., Elliott, D. C., Snowden-Swan, L. J., Onarheim, K., Solantausta, Y., & Beckman, D. (2014). Biomass direct liquefaction options. technoeconomic and life cycle assessment. Pacific Northwest National Lab. (PNNL). https://doi.org/10.2172/1184983

Ulate-Sancho, R. (2020). Evaluación del tratamiento por licuefacción hidrotérmica del rastrojo de piña para la obtención de un biocrudo. [(Tesis de licenciatura)]. Universidad de Costa Rica.

Wagner, J., Bransgrove, R., Beacham, T. A., Allen, M. J., Meixner, K., Drosg, B., Ting, V. P., & Chuck, C. J. (2016). Co-production of bio-oil and propylene through the hydrothermal liquefaction of polyhydroxybutyrate producing cyanobacteria. Bioresource Technology, 207, 166-174. https://doi.org/10.1016/j.biortech.2016.01.114

Yang, J., Niu, H., Corscadden, K., & Astatkie, T. (2018). Hydrothermal liquefaction of biomass model components for product yield prediction and reaction pathways exploration. Applied Energy, 228, 1618-1628. https://doi.org/10.1016/j.apenergy.2018.06.142

Yu, J., Biller, P., Mamahkel, A., Klemmer, M., Becker, J., Glasius, M., & Iversen, B. B. (2017). Catalytic hydrotreatment of bio-crude produced from the hydrothermal liquefaction of aspen wood: a catalyst screening and parameter optimization study. Sustainable Energy & Fuels, 1(4), 832-841. https://doi.org/10.1039/C7SE00090A

Zhu, Z., Rosendahl, L., Toor, S. S., Yu, D., & Chen, G. (2015). Hydrothermal liquefaction of barley straw to bio-crude oil: Effects of reaction temperature and aqueous phase recirculation. Applied Energy, 137, 183-192. https://doi.org/10.1016/j.apenergy.2014.10.005

Published

2024-08-31

How to Cite

Biofuels production in Costa Rica using hydrothermal liquefaction of biomass: preliminary estimation of its potential and carbon footprint. (2024). Uniciencia, 38(1). https://doi.org/10.15359/ru.38-1.23

Issue

Section

Original scientific papers (evaluated by academic peers)

How to Cite

Biofuels production in Costa Rica using hydrothermal liquefaction of biomass: preliminary estimation of its potential and carbon footprint. (2024). Uniciencia, 38(1). https://doi.org/10.15359/ru.38-1.23

Comentarios (ver términos de uso)

Most read articles by the same author(s)

<< < 50 51 52 53 54 55 56 57 58 > >>