Understanding Space Weather: Solar Cycles and Magnetic Rossby Waves
DOI:
https://doi.org/10.15359/ru.33-2.7Keywords:
Solar cycle, slow and fast magnetic Rossby waves, tachocline, MHD waves, solar physics, space weatherAbstract
The objective of this investigation is to explore the relationship between slow and fast magnetic Rossby waves and certain observations of long-term solar activity (months, years, decades, …). This paper seeks to determine if the periods of these waves correspond to the values recorded for cycles such as the Rieger cycle and the Haly cycle, or otherwise to quasi-periodic outbursts and of flares and Coronal Mass Ejections. The study begins with a literature review and a summary of the results of a Ph.D. dissertation that completely solves the mathematical model analyzed; using the equations derived from this previous work, the periods of the waves are calculated and then compared to observations. The results of this comparison suggest that certain types of solar activity may be due to Rossby magnetic waves originating within the Sun, specifically in the tachocline. The slow magnetic Rossby waves are associated with long-term and very long-term cycles, while the fast magnetic Rossby waves are a plausible cause for cycles with periods of months or a few years. The study of magnetic Rossby waves and their properties will doubtlessly provide new insights into the origin and properties of the solar magnetic field.
References
Board, S. S., & National Research Council. (2012). The Effects of Solar Variability on Earth's Climate: A Workshop Report. National Academies Press.
Chandrasekhar, S. (2013). Hydrodynamic and hydromagnetic stability. Courier Corporation.
Dikpati, M., Cally, P. S., McIntosh, S. W., & Heifetz, E. (2017). The Origin of the “Seasons” in Space Weather. Scientific reports, 7(1), 14750. doi: https://doi.org/10.1038/s41598-017-14957-x
Dikpati, M., & Gilman, P. A. (2001). Analysis of hydrodynamic stability of solar tachocline latitudinal differential rotation using a shallow-water model. The Astrophysical Journal, 551(1), 536. http://dx.doi.org/10.1086/320080.
Gilman, P. A. (2000). Magnetohydrodynamic “shallow water” equations for the solar tachocline. The Astrophysical Journal Letters, 544(1), L79. https://doi.org/10.1086/317291
Gilman, P. A., & Dikpati, M. (2002). Analysis of instability of latitudinal differential rotation and toroidal field in the solar tachocline using a magnetohydrodynamic shallow-water model. I. Instability for broad toroidal field profiles. The Astrophysical Journal, 576(2), 1031. http://dx.doi.org/10.1086/341799
Heng, K., & Spitkovsky, A. (2009). Magnetohydrodynamic shallow water waves: linear analysis. The Astrophysical Journal, 703(2), 1819. http://dx.doi.org/10.1088/0004-637X/703/2/1819
Hughes, D. W., Rosner, R., & Weiss, N. O. (Eds.). (2007). The Solar Tachocline. Cambridge University Press. doi: https://doi.org/10.1017/CBO9780511536243
Kahler, S. W. (1992). Solar flares and coronal mass ejections. Annual Review of Astronomy and Astrophysics, 30(1), 113-141. http://dx.doi.org/10.1146/annurev.aa.30.090192.000553
Kessler, W. S. (2006). The circulation of the eastern tropical Pacific: A review. Progress in Oceanography, 69(2-4), 181-217. http://dx.doi.org/10.1016/j.pocean.2006.03.009
Lang, K. R. (1995). Sun, earth and sky. Earth, Moon, and Planets, 70(1-3), 1-20. doi: https://doi.org/10.1007/978-3-642-57852-6
Lou, Y. Q., Wang, Y. M., Fan, Z., Wang, S., & Wang, J. X. (2003). Periodicities in solar coronal mass ejections. Monthly Notices of the Royal Astronomical Society, 345(3), 809-818. https://doi.org/10.1046/j.1365-8711.2003.06993.x
Malkus, W. V. (1967). Hydromagnetic planetary waves. Journal of Fluid Mechanics, 28(4), 793-802. https://doi.org/10.1017/s0022112067002447
Márquez-Artavia, X. (2017). Global Magnetohydrodynamic Waves in Stably Stratified Rotating Layers. (Tesis doctoral). Universidad de Leeds, Inglaterra.
Márquez-Artavia, X., Jones, C. A., & Tobias, S. M. (2017). Rotating magnetic shallow water waves and instabilities in a sphere. Geophysical & Astrophysical Fluid Dynamics, 111(4), 282-322. https://doi.org/10.1080/03091929.2017.1301937
McIntosh, S. W., Cramer, W. J., Marcano, M. P., & Leamon, R. J. (2017). The detection of Rossby-like waves on the Sun. Nature Astronomy, 1(4), 0086. https://doi.org/10.1038/s41550-017-0086 .
Miesch, M. S. (2005). Large-scale dynamics of the convection zone and tachocline. Living Reviews in Solar Physics, 2(1), 1. https://doi.org/10.12942/lrsp-2005-1
National Aeronautics and Space Administration. (2018). Solar Physics. [página web]. Recuperado de: http://solarscience.msfc.nasa.gov/.
Schecter, D. A., Boyd, J. F., & Gilman, P. A. (2001). “Shallow-water” magnetohydrodynamic waves in the Solartachocline. The Astrophysical Journal Letters, 551(2), L185. http://dx.doi.org/10.1086/320027
Schwenn, R. (2006). Space weather: The solar perspective. Living Reviews in Solar Physics, 3(1), 2. https://doi.org/10.12942/lrsp-2006-2
Solanki, S. K., Inhester, B., & Schüssler, M. (2006). The solar magnetic field. Reports on Progress in Physics, 69(3), 563. http://dx.doi.org/10.1088/0034-4885/69/3/R02
Tobias, S. M. (2005). The solar tachocline: Formation, stability and its role in the solar dynamo. Fluid dynamics and dynamos in astrophysics and geophysics, 1, 193. https://doi.org/10.1017/cbo9780511536243.014
Toledo, J. C. (2013) Variabilidad solar y clima terrestre. Nasa: Ciencia beta. Recuperado de: https://ciencia.nasa.gov/ciencias-especiales/08jan_sunclimate
Zaqarashvili, T. (2018). Equatorial magnetohydrodynamic shallow water waves in the solar tachocline. The Astrophysical Journal, 856(1), 32. https://doi.org/10.3847/1538-4357/aab26f
Zaqarashvili, T. V., Carbonell, M., Oliver, R., & Ballester, J. L. (2010a). Magnetic Rossby waves in the solar tachocline and Rieger-type periodicities. The Astrophysical Journal, 709(2), 749. http://dx.doi.org/10.1088/0004-637X/709/2/749
Zaqarashvili, T. V., Carbonell, M., Oliver, R., & Ballester, J. L. (2010b). Quasi-biennial oscillations in the solar tachocline caused by magnetic Rossby wave instabilities. The Astrophysical Journal Letters, 724(1), L95. http://dx.doi.org/10.1088/2041-8205/724/1/L95
Zaqarashvili, T. V., Oliver, R., & Ballester, J. L. (2009). Global shallow water magnetohydrodynamic waves in the solar tachocline. The Astrophysical Journal Letters, 691(1), L41.http://dx.doi.org/10.1088/0004-637X/691/1/L41
Zaqarashvili, T. V., Oliver, R., Hanslmeier, A., Carbonell, M., Ballester, J. L., Gachechiladze, T., & Usoskin, I. G. (2015). Long-term variation in the Sun’s activity caused by magnetic Rossby waves in the tachocline. The Astrophysical Journal Letters, 805(2), L14. http://dx.doi.org/10.1088/2041-8205/805/2/L14
Zeilik, M., & van Panhuys Smith, E. (1987). Introductory astronomy and astrophysics. Philadelphia: Saunders College Pub., c1987. 2nd ed.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors guarantee the journal the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
2. Authors can set separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, place it in an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
3. The authors have declared to hold all permissions to use the resources they provided in the paper (images, tables, among others) and assume full responsibility for damages to third parties.
4. The opinions expressed in the paper are the exclusive responsibility of the authors and do not necessarily represent the opinion of the editors or the Universidad Nacional.
Uniciencia Journal and all its productions are under Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
There is neither fee for access nor Article Processing Charge (APC)