Understanding Space Weather: Solar Cycles and Magnetic Rossby Waves

Authors

DOI:

https://doi.org/10.15359/ru.33-2.7

Keywords:

Solar cycle, slow and fast magnetic Rossby waves, tachocline, MHD waves, solar physics, space weather

Abstract

The objective of this investigation is to explore the relationship between slow and fast magnetic Rossby waves and certain observations of long-term solar activity (months, years, decades, …). This paper seeks to determine if the periods of these waves correspond to the values recorded for cycles such as the Rieger cycle and the Haly cycle, or otherwise to quasi-periodic outbursts and of flares and Coronal Mass Ejections. The study begins with a literature review and a summary of the results of a Ph.D. dissertation that completely solves the mathematical model analyzed; using the equations derived from this previous work, the periods of the waves are calculated and then compared to observations. The results of this comparison suggest that certain types of solar activity may be due to Rossby magnetic waves originating within the Sun, specifically in the tachocline. The slow magnetic Rossby waves are associated with long-term and very long-term cycles, while the fast magnetic Rossby waves are a plausible cause for cycles with periods of months or a few years. The study of magnetic Rossby waves and their properties will doubtlessly provide new insights into the origin and properties of the solar magnetic field.

References

Board, S. S., & National Research Council. (2012). The Effects of Solar Variability on Earth's Climate: A Workshop Report. National Academies Press.

Chandrasekhar, S. (2013). Hydrodynamic and hydromagnetic stability. Courier Corporation.

Dikpati, M., Cally, P. S., McIntosh, S. W., & Heifetz, E. (2017). The Origin of the “Seasons” in Space Weather. Scientific reports, 7(1), 14750. doi: https://doi.org/10.1038/s41598-017-14957-x

Dikpati, M., & Gilman, P. A. (2001). Analysis of hydrodynamic stability of solar tachocline latitudinal differential rotation using a shallow-water model. The Astrophysical Journal, 551(1), 536. http://dx.doi.org/10.1086/320080.

Gilman, P. A. (2000). Magnetohydrodynamic “shallow water” equations for the solar tachocline. The Astrophysical Journal Letters, 544(1), L79. https://doi.org/10.1086/317291

Gilman, P. A., & Dikpati, M. (2002). Analysis of instability of latitudinal differential rotation and toroidal field in the solar tachocline using a magnetohydrodynamic shallow-water model. I. Instability for broad toroidal field profiles. The Astrophysical Journal, 576(2), 1031. http://dx.doi.org/10.1086/341799

Heng, K., & Spitkovsky, A. (2009). Magnetohydrodynamic shallow water waves: linear analysis. The Astrophysical Journal, 703(2), 1819. http://dx.doi.org/10.1088/0004-637X/703/2/1819

Hughes, D. W., Rosner, R., & Weiss, N. O. (Eds.). (2007). The Solar Tachocline. Cambridge University Press. doi: https://doi.org/10.1017/CBO9780511536243

Kahler, S. W. (1992). Solar flares and coronal mass ejections. Annual Review of Astronomy and Astrophysics, 30(1), 113-141. http://dx.doi.org/10.1146/annurev.aa.30.090192.000553

Kessler, W. S. (2006). The circulation of the eastern tropical Pacific: A review. Progress in Oceanography, 69(2-4), 181-217. http://dx.doi.org/10.1016/j.pocean.2006.03.009

Lang, K. R. (1995). Sun, earth and sky. Earth, Moon, and Planets, 70(1-3), 1-20. doi: https://doi.org/10.1007/978-3-642-57852-6

Lou, Y. Q., Wang, Y. M., Fan, Z., Wang, S., & Wang, J. X. (2003). Periodicities in solar coronal mass ejections. Monthly Notices of the Royal Astronomical Society, 345(3), 809-818. https://doi.org/10.1046/j.1365-8711.2003.06993.x

Malkus, W. V. (1967). Hydromagnetic planetary waves. Journal of Fluid Mechanics, 28(4), 793-802. https://doi.org/10.1017/s0022112067002447

Márquez-Artavia, X. (2017). Global Magnetohydrodynamic Waves in Stably Stratified Rotating Layers. (Tesis doctoral). Universidad de Leeds, Inglaterra.

Márquez-Artavia, X., Jones, C. A., & Tobias, S. M. (2017). Rotating magnetic shallow water waves and instabilities in a sphere. Geophysical & Astrophysical Fluid Dynamics, 111(4), 282-322. https://doi.org/10.1080/03091929.2017.1301937

McIntosh, S. W., Cramer, W. J., Marcano, M. P., & Leamon, R. J. (2017). The detection of Rossby-like waves on the Sun. Nature Astronomy, 1(4), 0086. https://doi.org/10.1038/s41550-017-0086 .

Miesch, M. S. (2005). Large-scale dynamics of the convection zone and tachocline. Living Reviews in Solar Physics, 2(1), 1. https://doi.org/10.12942/lrsp-2005-1

National Aeronautics and Space Administration. (2018). Solar Physics. [página web]. Recuperado de: http://solarscience.msfc.nasa.gov/.

Schecter, D. A., Boyd, J. F., & Gilman, P. A. (2001). “Shallow-water” magnetohydrodynamic waves in the Solartachocline. The Astrophysical Journal Letters, 551(2), L185. http://dx.doi.org/10.1086/320027

Schwenn, R. (2006). Space weather: The solar perspective. Living Reviews in Solar Physics, 3(1), 2. https://doi.org/10.12942/lrsp-2006-2

Solanki, S. K., Inhester, B., & Schüssler, M. (2006). The solar magnetic field. Reports on Progress in Physics, 69(3), 563. http://dx.doi.org/10.1088/0034-4885/69/3/R02

Tobias, S. M. (2005). The solar tachocline: Formation, stability and its role in the solar dynamo. Fluid dynamics and dynamos in astrophysics and geophysics, 1, 193. https://doi.org/10.1017/cbo9780511536243.014

Toledo, J. C. (2013) Variabilidad solar y clima terrestre. Nasa: Ciencia beta. Recuperado de: https://ciencia.nasa.gov/ciencias-especiales/08jan_sunclimate

Zaqarashvili, T. (2018). Equatorial magnetohydrodynamic shallow water waves in the solar tachocline. The Astrophysical Journal, 856(1), 32. https://doi.org/10.3847/1538-4357/aab26f

Zaqarashvili, T. V., Carbonell, M., Oliver, R., & Ballester, J. L. (2010a). Magnetic Rossby waves in the solar tachocline and Rieger-type periodicities. The Astrophysical Journal, 709(2), 749. http://dx.doi.org/10.1088/0004-637X/709/2/749

Zaqarashvili, T. V., Carbonell, M., Oliver, R., & Ballester, J. L. (2010b). Quasi-biennial oscillations in the solar tachocline caused by magnetic Rossby wave instabilities. The Astrophysical Journal Letters, 724(1), L95. http://dx.doi.org/10.1088/2041-8205/724/1/L95

Zaqarashvili, T. V., Oliver, R., & Ballester, J. L. (2009). Global shallow water magnetohydrodynamic waves in the solar tachocline. The Astrophysical Journal Letters, 691(1), L41.http://dx.doi.org/10.1088/0004-637X/691/1/L41

Zaqarashvili, T. V., Oliver, R., Hanslmeier, A., Carbonell, M., Ballester, J. L., Gachechiladze, T., & Usoskin, I. G. (2015). Long-term variation in the Sun’s activity caused by magnetic Rossby waves in the tachocline. The Astrophysical Journal Letters, 805(2), L14. http://dx.doi.org/10.1088/2041-8205/805/2/L14

Zeilik, M., & van Panhuys Smith, E. (1987). Introductory astronomy and astrophysics. Philadelphia: Saunders College Pub., c1987. 2nd ed.

Published

2019-07-31

Issue

Section

Original scientific papers (evaluated by academic peers)

Comentarios (ver términos de uso)

Most read articles by the same author(s)

<< < 40 41 42 43 44 45 46 47 48 49 > >>