Criteria used by mathematics teachers to pose problems in the classroom

Authors

DOI:

https://doi.org/10.15359/ru.34-2.7

Keywords:

Teacher education, mathematics, problem solving, design, mathematics education, mathematics teachers

Abstract

The study of the problems posed by teachers to their students and the characteristics that should be considered to enhance mathematical competences is an issue that has gained interest in recent years. However, most of these studies have been approached from an epistemic, technological, or cognitive point of view, without effectively considering what math teachers usually do to pose problems in their classes. In this sense, the objective of this article is to explore the pedagogical conceptions and practices of a group of elementary and secondary teachers from southern Chile about the selection of mathematical problems for their classes, and the criteria they use for such selection. The interest of this study stems from assuming that, in the classroom, teachers are the articulating vehicle of educational policies. Another motivation for this paper is the results of research in Mathematics Education. For this purpose, a questionnaire was presented which showed that teachers choose any of the following three mathematical problems: i) problems taken from textbooks, internet, and other resources; ii) problems adapted from textbooks, internet, or other resources (own variations); and iii) problems created by the teacher. In any case, there is a growing interest in teachers to pose problems with contexts that students feel close to and arouse interest from an emotional point of view. In addition, it was observed that the criteria used by teachers for posing math problems in the classroom implicitly contemplate the didactical suitability criteria proposed within the framework of the Onto-Semiotic Approach to Mathematical Knowledge and Instruction (OSA).

References

Arcavi, A., & Friedlander, A. (2007). Curriculum developers and problem solving: the case of Israeli elementary school projects. ZDM Mathematics Education, 39(5-6), 355-364. doi: https://doi.org/10.1007/s11858-007-0050-3

Borasi, R. (1986). On the nature of problems. Educational Studies in Mathematics, 17(2), 125-141. doi: https://doi.org/10.1007/BF00311517

Breda, A.; Pino-Fan, L., & Font, V. (2017). Meta didactic-mathematical knowledge of teachers: criteria for the reflection and assessment on teaching practice. Eurasia Journal of Mathematics, Science and Technology Education, 13(6), 1893-1918. doi: https://doi.org/10.12973/eurasia.2017.01207a

Breda, A., Font, V., & Pino-Fan, L. (2018). Criterios valorativos y normativos en la didáctica de las matemáticas: El caso del constructo idoneidad didáctica. Bolema, Río Claro, 32(60), 255-278. doi: http://dx.doi.org/10.1590/1980-4415v32n60a13

Castro, W. F., Pino-Fan, L., & Velásquez-Echavarría, H. (2018). A proposal to enhance preservice teacher’s noticing. Eurasia Journal of Mathematics, Science and Technology Education, 14(11), 1-17. doi: https://doi.org/10.29333/ejmste/92017

Cohen, L., Manion, L., & Morrison, K. (2011). Research Methods in Education (7th ed.). London: Routledge.

Crespo, S. (2003). Learning to pose mathematical problems: exploring changes in preservice teachers’ practices. Educational Studies in Mathematics, 52(3), 243-270. doi: https://doi.org/10.1023/A:1024364304664

De Guzmán, M. (1993). Tendencias innovadoras en educación matemática. Madrid, España: Universidad Complutense. Recuperado de http://nautilus.fis.uc.pt/bspm/revistas/25/009-034.150.pdf

Felmer, P., Pehkonen, E., & Kilpatrick, J. (2016). Posing and solving mathematical problems. Suiza: Springer International Publishing. Recuperado de https://link.springer.com/book/10.1007%2F978-3-319-28023-3

Felmer, P., & Perdomo-Díaz, J. (2016). Novice Chilean Secondary Mathematics Teachers as Problem Solvers. In P. Felmer, E. Pehkonen, & J. Kilpatrick (2016), Posing and solving mathematical problems (pp. 287-308). Suiza: Springer International Publishing. doi: https://doi.org/10.1007/978-3-319-28023-3_17

Font, V., Planas, N., & Godino, J. D. (2010). Modelo para el análisis didáctico en educación matemática. Infancia y Aprendizaje, 33(1), 89-105. Recuperado de https://www.academia.edu/1252367/Modelo_para_el_an%C3%A1lisis_did%C3%A1ctico_en_educaci%C3%B3n_matem%C3%A1tica

Font, V. (2011). Competencias profesionales en la formación inicial de profesores de matemáticas de secundaria. Unión. Revista Iberoamericana de Educación Matemática, 26, 9-25. Recuperado de http://www.fisem.org/www/union/revistas/2011/26/archivo_5_de_volumen_26.pdf

Font, V., Godino, J. D., & Gallardo, J. (2013). The Emergence of Objects from Mathematical Practices. Educational Studies in Mathematics, 82(1), 97-124. doi: https://doi.org/10.1007/s10649-012-9411-0

Foster, C. & Inglis, M. (2017). Teachers’ appraisals of adjectives relating to mathematics tasks. Educational Studies in Mathematics, 95(3), 283–301. https://doi.org/10.1007/s10649-017-9750-y

Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM Mathematics Education, 39(1-2), 127-135. doi: https://doi.org/10.1007/s11858-006-0004-1

Godino, J. D., Batanero, C., & Font, V. (2019). The onto-semiotic approach: implications for the prescriptive character of didactics. For the Learning of Mathematics, 39(1), 37- 42.

Godino, J. D., Giacomone, B., Font, V., & Pino-Fan, L. (2018). Conocimientos profesionales en el diseño y gestión de una clase sobre semejanza de triángulos. Análisis con herramientas del modelo CCDM. Avances de Investigación en Educación Matemática, 13, 63-83. Recuperado de https://www.aiem.es/index.php/aiem/article/view/224

Halmos, P. R. (1980). The heart of mathematics. The American Mathematical Monthly, 87(7), 519-524. Recuperado de https://www.jstor.org/stable/2321415

Kaiber, C. T., Lemos, A., & Pino-Fan, L. (2017). Enfoque ntossemiótico do Conhecimento e da Instrução Matemática (EOS): um panorama das pesquisas na América Latina. Perspectivas da Educação Matemática, 10(23), 531 –552. Recuperado de https://periodicos.ufms.br/index.php/pedmat/article/download/5056/4091.

Kilpatrick, J. (1985). A Retrospective Account of the Twenty-five Years of Research on Teaching Mathematical Problem Solving. En E. A. Silver (Ed.), Teaching and learning mathematical problem solving: multiple research perspective (pp.1-15). Hillsdale, USA: Lawrence Erlbaum.

Klinshtern, M., Koichu, B., & Berman, A. (2015). What do high school teachers mean by saying “I pose my own problems”. In F. M., Singer, N., Ellerton & J., Cai. (2015). Mathematical Problem Posing. From research to effective practice (pp. 449-467). New York: Springer. doi: https://doi.org/10.1007/978-1-4614-6258-3_22

Liljedahl, P., Santos-Trigo, M., Malaspina, U., & Bruder, R. (2016). Problem solving in Mathematics Education. Hamburg, Germany: ICME-13 Topical Surveys, SpringerOpen. doi: https://doi.org/10.1007/978-3-319-40730-2_1

Love, E., & Pimm, D. (1996). ‘This is so’: a text on texts. En A. Bishop, K. Clements, C. Keitel, J. Kilpatrick, y C. Laborde (Eds.), International handbook of mathematics education (pp. 371– 409). Dordrecht, Holanda: Kluwer. Recuperado de https://link.springer.com/chapter/10.1007/978-94-009-1465-0_11

Malaspina, U., Mallart, A., & Font, V. (2015). Development of teachers' mathematical and didactic competencies by means of problem posing. En K. Krainer y N. Vondrová (Eds.), Proceedings of the Ninth Congress of the European Society for Research in Mathematics Education (pp. 2861-2866). Prague, Czech Republic: CERME. Recuperado de https://hal.archives-ouvertes.fr/hal-01289630/document

Malaspina, U. (2016). Creación de problemas: Sus potencialidades en la enseñanza y aprendizaje de las matemáticas. Cuadernos de Investigación y Formación en Educación Matemática, 11(15), 321-331. Recuperado de https://revistas.ucr.ac.cr/index.php/cifem/article/view/23946/24101

Malaspina, U. (2017). La creación de problemas como medio para potenciar la articulación de competencias y conocimientos del profesor de matemáticas. En J. M. Contreras, P. Arteaga, G. R. Cañadas, M. M. Gea, B. Giacomone y M. M. López-Martín (Eds.), Actas del Segundo Congreso International Virtual sobre el Enfoque Ontosemiótico del Conocimiento y la Instrucción Matemáticos. Pontificia Universidad Católica del Perú, Perú. Recuperado de http://enfoqueontosemiotico.ugr.es/civeos/malaspina.pdf

Morales-López, Y. & Font, V. (2019). Evaluation by a teacher of the suitability of her mathematics class. Educação e Pesquisa, 45, 1-19. doi: https://dx.doi.org/10.1590/s1678-4634201945189468

NCTM. (1989). Curriculum and Evaluation Standards for School Mathematics. Reston, Virginia, USA: NCTM. Recuperado de http://csmc.missouri.edu/PDFS/CCM/summaries/standards_summary.pdf

NCTM. (2016). De los principios a la acción. Para garantizar el éxito matemático para todos. Reston, Virginia, USA: NCTM.

Perdomo-Díaz, J., Felmer, P., Randolph, V., González, G. (2017). Problem Solving as a Professional Development Strategy for Teachers: a Case Study with Fractions. Eurasia Journal of Mathematics, Science and Technology Education, 13(3), 987-999. doi: https://doi.org/10.12973/eurasia.2017.00653a

Pino-Fan, L., Assis, A., & Castro, W. F. (2015). Towards a methodology for the characterization of teachers’ didactic-mathematical knowledge. Eurasia Journal of Mathematics, Science & Technology Education, 11(6), 1429-1456. Recuperado de https://pdfs.semanticscholar.org/dea9/70789e49dbe1d8206a04b19f4096fd186b89.pdf

Pino-Fan, L., & Godino, J. D. (2015). Perspectiva ampliada del conocimiento didáctico-matemático del profesor. PARADIGMA, 36(1), 87-109. Recuperado de https://pdfs.semanticscholar.org/bb35/fef73c0071dd63b94156d8757a9cd7b6f6bd.pdf?_ga=2.187459496.1402721529.1572471938-923436786.1565796163

Pino-Fan, L., Font, V., & Breda, A. (2017). Mathematics teachers’ knowledge and competences model based on the onto-semiotic approach. In B. Kaur, W. K. Ho, T. L. Toh & B. H. Choy (Eds.), Proceedings of the 41st Conference of the International Group for the Psychology of Mathematics Education (pp. 33-40). Singapure, Asia: PME. Recuperado de https://www.dropbox.com/s/6t1yfkuzy0ynbb4/Pino-Fan,Font %26 Breda_CCDM_PME.pdf?dl=0

Pino-Fan, L. Godino, J. D., & Font, V. (2018). Assessing key epistemic features of didactic-mathematical knowledge of prospective teachers: the case of the derivative. Journal of Mathematics Teacher Education, 21(1), 63-94. doi: http://dx.doi.org/10.1007/s10857-016-9349-8

Pino-Fan, L., Guzmán, I., Larraín, M., & Vargas, C. (2018). La formación inicial de profesores en Chile: 'voces' de la comunidad chilena de investigación en educación matemática. Uniciencia, 32(1), 68-88. doi: http://dx.doi.org/10.15359/ru.32-1.5

Polya, G. (1986). How to Solve it. [Cómo plantear y resolver problemas]. New Jersey, USA: Princeton University Press.

Presmeg, N. (2014). Visualization and Learning in Mathematics Education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education. Dordrecht, Holanda: Springer. doi: https://doi.org/10.1007/978-94-007-4978-8

Ron, G., Zaslavsky, O. & Zodik, I. (2013). Engaging teachers in the web of considerations underlying the design of tasks that foster the need for new mathematical concept tools. In C. Margolinas (Ed.), Task design in mathematics education; Proceedings of the International Commission on Mathematical Instruction Study 22, (pp. 641–647), Oxford, UK. Recuperado de http://hal.archives-ouvertes.fr/hal-00834054

Schoenfeld, A. H. (1985). Mathematical problem solving. New York: Academic Press. doi: https://doi.org/10.1016/C2013-0-05012-8

Singer, F.M., Ellerton, N., & Cai, J. (2015). Mathematical Problem Posing. New York: Springer. doi: 10.1007/978-1-4614-6258-3

Published

2020-07-31

Issue

Section

Original scientific papers (evaluated by academic peers)

Comentarios (ver términos de uso)