Fuzzy representation of rainfall threshold in triggering mass removal processes
DOI:
https://doi.org/10.15359/ru.35-1.14Keywords:
Fuzzy sets, Mass removals, Precision, Statistical inference, ThresholdAbstract
The main objective of this research is to implement a new methodology for the quantitative representation of metric records on mass removal processes that incorporates the characteristic imprecision consistent with human and/or technical nature. The research used a positivist paradigm with a quantitative scope and longitudinal measurement in a propositive context. The study sample included daily rainfall records of the Punta Ángeles meteorological stations from the Chilean Navy Meteorological Service and Meteorological Laboratory of the Institute of Geography of the Pontifical Catholic University of Valparaiso, between 2008 and 2013. As a result, it is observed that the proposed methodology allows for quick decision-making with formal statistical support, as well as consistency in the precipitation measurements from both stations. In addition, the creation of an alert threshold was improved, and no significant differences were established in the rainfall variability in the meteorological stations studied and the recording years, which leads to the conclusion that this proposal represents a qualitative improvement in generating quantitative results.
References
Aleotti, P. (2004). A warning system for rainfall-induced shallow failures. Engineering Geology, 73 (3-4), 247-265. doi: https://doi.org/10.1016/j.enggeo.2004.01.007
Biasutti, M., Seager, R., & Kirschbaum, D. B. (2016). Landslides in West Coast metropolitan areas: The role of extreme weather events. Weather and Climate Extremes, 14, 67-79. doi: https://doi.org/10.1016/j.wace.2016.11.004
De Barros, L., & Bassanezi, R. (2006). Tópicos de lógica Fuzzy E biomatemática. IMECC-Unicamp. Campinas (In Portuguese). https://bit.ly/36RSkXL
Dubois, D., & Prade, H. (1978). Operations on fuzzy numbers. International Journal of Systems Science, 9, 613–626. doi: https://doi.org/10.1080/00207727808941724
Dubois, D., Kerre, E., Mesiar, R., & Prade, H. (2000). Fuzzy interval analysis. In Fundamentals of fuzzy sets (pp. 483-581). Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4429-6_11
Dubois, D., & Prade, H. (1982). On Several Representations of an Uncertain Body of Evidence. In Fuzzy Information and Decision Processes, 167-181. Elsevier, Amsterdam.
Erikson, I., & Högstedt, J. (2004). Landslide Hazard Assesment and Landslide Precipitation Relationship in Valparaís. Department of Physical Geography. Central Chile. https://bit.ly/2TobDE8
Foti, S. (2012). Combined use of Geophysical Methods for Geotechnical Site Characterization. 4th International Conference on Geotechnical and Geophysical Site Characterization Recife. Brasil.
Fisher, R.A. (1922). On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London. Series A Containing Papers of a Mathematical or Physical Caracter, 222, 309–368. doi: https://doi.org/10.1098/rsta.1922.0009
González, J. A., Castro, L. M., Lachos, V. H., & Patriota, A. G. (2016). A confidence set analysis for observed samples: a fuzzy set approach. Entropy, 18(6), 211. doi: https://doi.org/10.3390/e18060211
Hauser, A. (2000). Remociones en masa en Chile. Servicio Nacional de Geología y Minería. Boletín n.° 59. Santiago, Chile.
Hernández-Sampieri, R., Fernández-Collado., & Baptista-Lucio, M. (2014). Metodología de la investigación (No. 303.1). McGraw-Hill Education,
Hoff, P. A. (2009). First Course in Bayesian Statistical Methods. Springer. https://doi.org/10.1007/978-0-387-92407-6
Ma, Chao, Wang., Yujie, Hu., Kaiheng, Du, Cui., & Yang, Wentao. (2017). Rainfall intensity–duration threshold and erosion competence of debris flows in four areas affected by the 2008 Wenchuan earthquake, Geomorphology, 288, 85-95. doi: https://doi.org/10.1016/j.geomorph.2017.01.012
Martínez, C. (1994). Diagnóstico de riesgo de inundación y deslizamientos de laderas en la ciudad de Valparaíso a través de sistema de información geográfico. UPLA.
Mauris, G. (2009). Possibility distribution: A unified representation for parameter estimation. In Proceedings of the Joint IFSA-EUSFLAT, 1589-1594. Conference, Lisbon, Portugal.
Neyman, J. (1956). Note on an article by Sir Ronald Fisher. Journal of the Royal Statistical Society. Series B (Methodological), 18(2), 288–294. doi: https://doi.org/10.1111/j.2517-6161.1956.tb00236.x
Nasseri, S., Taleshian, F., Alizadeh, Z., & Vahidi, J. (2012). A New Method for Ordering LR Fuzzy Number. The Journal of Mathematics and Computer Science, 4(3), 283–294. https://doi.org/10.22436/jmcs.04.03.01
Namakforoosh, M. N. (2000). Metodología de la investigación. Editorial Limusa.
Reichenbach, P., Cardinali, M., De Vita. P., & Guzzetti, F. (1998). Regional hydrological thresholds for landslidesand floods in the Tiber River Basin (Central Italy). Environ Geol, 35(2-3),146-159. https://doi.org/10.1007/s002540050301
Zadeh, L. (1965). Fuzzy sets. Inf. Control, 8, 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
Zadeh, L. A. (1999). Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems, 100, 9-34. https://doi.org/10.1016/S0165-0114(99)80004-9
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors guarantee the journal the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
2. Authors can set separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, place it in an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
3. The authors have declared to hold all permissions to use the resources they provided in the paper (images, tables, among others) and assume full responsibility for damages to third parties.
4. The opinions expressed in the paper are the exclusive responsibility of the authors and do not necessarily represent the opinion of the editors or the Universidad Nacional.
Uniciencia Journal and all its productions are under Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
There is neither fee for access nor Article Processing Charge (APC)