Carbon dioxide photoreduction using TiO2 sensitized with Co and Cu trimers in aqueous media

Authors

DOI:

https://doi.org/10.15359/ru.35-1.21

Keywords:

CO2 photoreduction, photocatalysis, TiO2, sensitization, metal trimers

Abstract

During this investigation, the performance of two titanium dioxide photocatalysts was evaluated in the photoreduction of carbon dioxide in aqueous media. One of the photocatalysts was sensitized with a copper trimer (Cu3(dpa)4Cl2) (dpa = 2.2´-dipyridylamine) and the other was sensitized with a cobalt trimer (Co3(dpa)4Cl2). Using a microwave reactor, the first experimental stage studied the TiO2 sensitization process, which occurs in two successive reactions: in the first one, the TiO2 surface is functionalized with p-Aminobenzoic acid (PABA) which acts as a binding molecule between TiO2 and the respective trimer, while in the second reaction, the metal trimer is anchored. Three levels of temperature, power output, and reaction time were analyzed for each of the two reactions; however, a Taguchi statistical analysis showed no significant differences between the treatments for the selected conditions. Therefore, it was determined that the photocatalyst sensitization process can be performed under the following conditions without affecting the final composition of each catalyst: 70 °C, 100 W, and 5 min in the functionalization stage with PABA and 80 °C, 150 W, and 5 min in the anchorage of the dyes. In the second experimental stage, the synthesized photocatalysts for CO2 photoreduction in aqueous medium was evaluated utilizing a medium-pressure ultraviolet lamp in a photoreactor at atmospheric pressure and at 25 °C. The catalyst with the best performance was the one sensitized with cobalt trimer since it showed a higher production of methane (14.28\ \sfrac{\mu mol}{g_{cat}\ h}), and carbon monoxide (32.84\sfrac{\mu mol}{g_{cat}\ h}). The copper sensitized catalyst showed no measurable generation of carbon monoxide, and the methane production was considerably lower (6.23\ µmolgcat h). Hydrogen production was important with both catalysts, particularly the catalyst sensitized with the copper trimer (420\ µmolgcat h). No presence of other CO2 reduction products was detected in the liquid phase.

References

Al Jitan, S., Palmisano, G., & Garlisi, C. (2020). Synthesis and surface modification of TiO2-based photocatalysts for the conversion of CO2. Catalysts, 10(2). https://doi.org/10.3390/catal10020227

Aurian-Blajeni, B., Halmann, M., & Manassen, J. (1980). Photoreduction of carbon dioxide and water into formaldehyde and methanol on semiconductor materials. Solar Energy, 25(2), 165–170. https://doi.org/10.1016/0038-092X(80)90472-7

Bahadori, E., Tripodi, A., Villa, A., Pirola, C., Prati, L., Ramis, G., & Rossetti, I. (2018). High pressure photoreduction of co2: Effect of catalyst formulation, hole scavenger addition and operating conditions. Catalysts, 8(10). https://doi.org/10.3390/catal8100430

Berry, J. F., Cotton, F. A., Lei, P., & Murillo, C. A. (2003). Further Structural and Magnetic Studies of Tricopper Dipyridylamido Complexes. Inorganic Chemistry, 42(2), 377–382. https://doi.org/10.1021/ic025957c

Camacho, D. (2012). Evaluación de varios sustratos modificados de dióxido de titanio (TiO2) como fotocatalizadores para la producción de hidrógeno a partir de la hidrólisis de agua [Proyecto de Graduación de Licenciatura]. Universidad de Costa Rica.

Carp, O., Huisman, C. L., & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32(1), 33–177. https://doi.org/10.1016/j.progsolidstchem.2004.08.001

Chen, X., & Jin, F. (2019). Photocatalytic reduction of carbon dioxide by titanium oxide-based semiconductors to produce fuels. Frontiers in Energy, 13(2), 207–220. https://doi.org/10.1007/s11708-019-0628-9

Cotton, F. A., Daniels, L. M., & Jordan, G. T. (1997). Efficient preparation of a linear, symmetrical, metal-metal bonded tricobalt compound; should we believe there is a bond stretch isomer? Chem. Commun., 5, 421–422. https://doi.org/10.1039/A608482F

Do, J. Y., Kwak, B. S. Park, S.-M., & Kang, M. (2016). Effective Carbon Dioxide Photoreduction over Metals (Fe-, Co-, Ni-, and Cu-) Incorporated TiO2/Basalt Fiber Films. International Journal of Photoenergy, 2016, 5195138. https://doi.org/10.1155/2016/5195138

Dutta, P. K., & Radner, R. (2009). A strategic analysis of global warming: Theory and some numbers. Journal of Economic Behavior & Organization, 71(2), 187–209. https://doi.org/10.1016/J.JEBO.2009.01.013

Fujiwara, H., Hosokawa, H., Murakoshi, K., Wada, Y., Yanagida, S., Okada, T., & Kobayashi, H. (1997). Effect of Surface Structures on Photocatalytic CO2 Reduction Using Quantized CdS Nanocrystallites. The Journal of Physical Chemistry B, 101(41), 8270–8278. https://doi.org/10.1021/jp971621q

Ha, E.-G., Chang, J.-A., Byun, S.-M., Pac, C., Jang, D. M., Park, J., & Kang, S. (2014). High-turnover visible-light photoreduction of CO2 by a Re(I) complex stabilized on dye-sensitized TiO2. Chemical communications (Cambridge, England), 50. https://doi.org/10.1039/c3cc49744e

Hmiel, B., Petrenko, V. V., Dyonisius, M. N., Buizert, C., Smith, A. M., Place, P. F., Harth, C., Beaudette, R., Hua, Q., Yang, B., Vimont, I., Michel, S. E., Severinghaus, J. P., Etheridge, D., Bromley, T., Schmitt, J., Faïn, X., Weiss, R. F., & Dlugokencky, E. (2020). Preindustrial 14CH4 indicates greater anthropogenic fossil CH4 emissions. Nature, 578(7795), 409–412. https://doi.org/10.1038/s41586-020-1991-8

Izumi, Y. (2015). Recent Advances (2012–2015) in the Photocatalytic Conversion of Carbon Dioxide to Fuels Using Solar Energy: Feasibilty for a New Energy. En Advances in CO2 Capture, Sequestration, and Conversion (pp. 1–46). American Chemical Society. https://doi.org/10.1021/bk-2015-1194.ch001

Johne, P., & Kisch, H. (1997). Photoreduction of carbon dioxide catalysed by free and supported zinc and cadmium sulphide powders. Journal of Photochemistry and Photobiology A: Chemistry, 111(1), 223–228. https://doi.org/10.1016/S1010-6030(97)00228-1

Jordan, D. E. (1980). Spectrophotometric determination of traces of formic acid and formaldehyde in effluent waters with or without preconcentration. Analytica Chimica Acta, 113(1), 189–194. https://doi.org/10.1016/S0003-2670(01)85131-X

Kočí, K., Obalová, L., & Lacný, Z. (2008). Photocatalytic reduction of CO2 over TiO2 based catalysts. Chemical Papers, 62(1), 1–9. https://doi.org/10.2478/s11696-007-0072-x

Kohno, Y., Ishikawa, H., Tanaka, T., Funabiki, T., & Yoshida, S. (2001). Photoreduction of carbon dioxide by hydrogen over magnesium oxide. Physical Chemistry Chemical Physics, 3. https://doi.org/10.1039/B008887K

Kohno, Y., Tanaka, T., Funabiki, T., & Yoshida, S. (1997). Photoreduction of carbon dioxide with hydrogen over ZrO2. Chemical Communications, 9, 841–842. https://doi.org/10.1039/A700185A

Kumar, B., Llorente, M., Froehlich, J., Dang, T., Sathrum, A., & Kubiak, C. P. (2012). Photochemical and Photoelectrochemical Reduction of CO 2. Annual Review of Physical Chemistry, 63(1), 541–569. https://doi.org/10.1146/annurev-physchem-032511-143759

Lingampalli, S. R., Ayyub, M. M., & Rao, C. N. R. (2017). Recent Progress in the Photocatalytic Reduction of Carbon Dioxide. ACS Omega, 2(6), 2740–2748. https://doi.org/10.1021/acsomega.7b00721

Liu, X., Ye, L., Liu, S., Li, Y., & Ji, X. (2016). Photocatalytic Reduction of CO2 by ZnO Micro/nanomaterials with Different Morphologies and Ratios of {0001} Facets. Scientific Reports, 6. https://doi.org/10.1038/srep38474

Mahmodi, G., Sharifnia, S., Madani, M., & Vatanpour, V. (2013). Photoreduction of carbon dioxide in the presence of H2, H2O and CH4 over TiO2 and ZnO photocatalysts. Solar Energy, 97, 186–194. https://doi.org/10.1016/j.solener.2013.08.027

Maidan, R., & Willner, Itamar. (1986). Photoreduction of carbon dioxide to methane in aqueous solutions using visible light. Journal of the American Chemical Society, 108(25), 8100–8101. https://doi.org/10.1021/ja00285a043

Mao, J., Li, K., & Peng, T. (2013). Recent advances in the photocatalytic CO2 reduction over semiconductors. Catalysis Science & Technology, 3(10), 2481–2498. https://doi.org/10.1039/C3CY00345K

Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., & Waterfield, T. (2019). Global warming of 1.5°C An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty Edited by Science Officer Science Assistant Graphics Officer Working Group I Technical Support Unit. www.environmentalgraphiti.org

Mele, G., Annese, C., D’Accolti, L., De Riccardis, A., Fusco, C., Palmisano, L., Scarlino, A., & Vasapollo, G. (2015). Photoreduction of Carbon Dioxide to Formic Acid in Aqueous Suspension: A Comparison between Phthalocyanine/TiO2 and Porphyrin/TiO2 Catalysed Processes. Molecules, 20(1). https://doi.org/10.3390/molecules20010396

Montero, N. (2014). Síntesis y caracterización de varios sustratos de dióxido de titanio (TiO2) modificados con dímeros y trímeros de metales de transición para la producción de hidrógeno. [Práctica Dirigida de Licenciatura]. Universidad de Costa Rica].http://repositorio.sibdi.ucr.ac.cr:8080/jspui/bitstream/123456789/2750/1/38120.pdf

Nguyen, T., Wu, J., Chiou, C. (2008). Photoreduction pf CO2 over Ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight. Catalysis Comunications, 9(10). https://doi.org/10.1016/j.catcom.2008.04.004

Nogueira, A. E., Oliveira, J. A., da Silva, G. T. S. T., & Ribeiro, C. (2019). Insights into the role of CuO in the CO2 photoreduction process. Scientific Reports, 9(1), 1316. https://doi.org/10.1038/s41598-018-36683-8

Ola, O., & Maroto-Valer, M. M. (2015). Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 24, 16–42. https://doi.org/10.1016/j.jphotochemrev.2015.06.001

Olivo, A., Ghedini, E., Signoretto, M., Compagnoni, M., & Rossetti, I. (2017). Liquid vs. Gas Phase CO2 photoreduction process: Which is the effect of the reaction medium? Energies, 10(9). https://doi.org/10.3390/en10091394

Ozcan, O., Yukruk, F., Akkaya, E. U., & Uner, D. (2007). Dye sensitized artificial photosynthesis in the gas phase over thin and thick TiO2 films under UV and visible light irradiation. Applied Catalysis B: Environmental, 71(3), 291–297. https://doi.org/10.1016/j.apcatb.2006.09.015

Pan, P.-W., & Chen, Y.-W. (2007). Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation. Catalysis Communications, 8(10), 1546–1549. https://doi.org/10.1016/j.catcom.2007.01.006

Razzaq, A., & In, S. I. (2019). TiO2 based nanostructures for photocatalytic CO2 conversion to valuable chemicals. Micromachines, 10(5). https://doi.org/10.3390/mi10050326

Rivera, C. (2012). Funcionalización de dióxido de titanio nanoparticulado con diferentes moléculas orgánicas bifuncionales y trímeros de compuestos de transición para la obtención de nuevos materiales [Tesis de Maestría]. Universidad de Costa Rica.

Sapart, C., Monteil, G., Prokopiou, M., van de Wal, R., Kaplan, J., Sperlich, P., Krumhardt, K., van der Veen, C., Houweling, S., Krol, M., Blunier, T., Sowers, T., Martinerie, P., Witrant, E., Dahl-Jensen, D. & Rockmann, T. (2012). Natural and anthropogenic variations in methane sources during the past two millennia. Nature, 490(7418), 85–88. https://doi.org/10.1038/nature11461

Sun, Z., Talreja, N., Tao, H., Texter, J., Muhler, M., Strunk, J., & Chen, J. (2018). Catalysis of Carbon Dioxide Photoreduction on Nanosheets: Fundamentals and Challenges. Angewandte Chemie - International Edition, 57(26), 7610–7627. https://doi.org/10.1002/anie.201710509

Tanaka, T., Kohno, Y., & Yoshida, S. (2000). Photoreduction of carbon dioxide by hydrogen and methane. Research on Chemical Intermediates, 26(1), 93–101. https://doi.org/10.1163/156856700X00129

Teramura, K., Tanaka, T., Ishikawa, H., Kohno, Y., & Funabiki, T. (2004). Photocatalytic Reduction of CO2 to CO in the Presence of H2 or CH4 as a Reductant over MgO. The Journal of Physical Chemistry B, 108(1), 346–354. https://doi.org/10.1021/jp0362943

Thomas, A., Jackman, M., Wagstaffe, M., Radtke, H., Syres, K. L., Adell, J., Levy, A., & Martsinovich, N. (2014). Adsorption Studies of p-Aminobenzoic Acid on the Anatase TiO2(101) Surface. Langmuir : the ACS journal of surfaces and colloids, 30. https://doi.org/10.1021/la5032619

Wang, W.-N., Soulis, J., Yang, Y. J., & Biswas, P. (2014). Comparison of CO2 Photoreduction Systems: A Review. Aerosol and Air Quality Research, 14(2), 533–549. https://doi.org/10.4209/aaqr.2013.09.0283

Wang, Z.-Y., Chou, H.-C., Wu, J. C. S., Tsai, D. P., & Mul, G. (2010). CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy. Applied Catalysis A: General, 380(1), 172–177. https://doi.org/10.1016/j.apcata.2010.03.059

Xu, R., Tian, H., Lu, C., Pan, S., Chen, J., Yang, J., & Zhang, B. (2016). Estimation of pre-industrial nitrous oxide emissions from the land biosphere. Climate of the Past Discussions, 1–34. https://doi.org/10.5194/cp-2016-103

Zhao, Y., Liu, N., Zhou, S., & Zhao, J. (2019). Two-dimensional ZnO for the selective photoreduction of CO2. Journal of Materials Chemistry A, 7(27), 16294–16303. https://doi.org/10.1039/C9TA04477A

Published

2021-01-31

Issue

Section

Original scientific papers (evaluated by academic peers)

Comentarios (ver términos de uso)

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>