Structures in direct and inverse forms of a function evidenced by 7–8-year-old students

Authors

DOI:

https://doi.org/10.15359/ru.35-2.16

Keywords:

direct variation of a function, functional thinking, generalization, inverse variation of a function, structure

Abstract

This study aimed to identify and compare the structures evidenced by primary school students in direct and inverse forms of a function, both working with particular cases and generalizing from an early algebra functional approach. The study was qualitative, exploratory, and descriptive. A contextualized task was designed involving the linear function y=x+4 in direct and inverse variations. Six 2nd graders (7-8 years of age) from a school in Granada (Spain) participated in the study performing a designed task during semi-structured interviews conducted in the 2017-2018 school year. We described the structures evidenced in both variations with particular cases and the general case. All six students identified adequate structures in the direct variation of the function at least once during the interview. Adequate structures were also observed in the inverse variation. However, some students did not respond to this section or were not asked these questions. The majority of the structures that students generalized were produced when explicitly asked for generalization, in both direct and inverse variations of the function. When using the relationship between two variables, differences were found between structures identified by students in both direct and inverse variations. Most of the structures identified were adequate for the problem, which encourages work with both variations of linear functions in primary education.

References

Bednarz, N., Kieran, C. y Lee, L. (1996). Approaches to algebra: Perspectives for research and teaching. Kluwer. https://doi.org/10.1007/978-94-009-1732-3

Blanton, M. L. (2008). Algebra and the elementary classroom: Transforming thinking, transforming practice. Heinemann.

Blanton, M. y Kaput, J. (2004). Elementary grades students’ capacity for functional thinking. En M. Hoines y A. Fuglestad (Eds.), Proceedings of the 28th International Conference for the Psychology of Mathematics Education (Vol. 2, pp. 135-142). Bergen University College.

Blanton, M., Brizuela, B. M., Gardiner, A., Sawrey, K. y Newman-Owens, A. (2015). A learning trajectory in 6-year-olds’ thinking about generalizing functional relationships. Journal for Research in Mathematics Education, 46(5), 511-558. https://doi.org/10.5951/jresematheduc.46.5.0511

Blanton, M., Levi, L., Crites, T. y Dougherty, B. (2011). Developing essential understanding of algebraic thinking for teaching mathematics in Grades 3-5. NCTM.

Cañadas M. C. y Fuentes, S. (2015). Pensamiento funcional de estudiantes de primero de educación primaria: un estudio exploratorio. Investigación en educación matemática XIX (pp. 211-220). SEIEM.

Cañadas, M. C. y Castro, E. (2007). A proposal of categorisation for analysing inductive reasoning. PNA, 1(2), 67-78.

Cañadas, M. C. y Molina, M. (2016). Una aproximación al marco conceptual y principales antecedentes del pensamiento funcional en las primeras edades. En E. Castro, E. Castro, J. L. Lupiáñez, J. F. Ruíz y M. Torralbo (Eds.), Investigación en Educación Matemática. Homenaje a Luis Rico (pp. 209-218). Comares.

Carraher, D. W. y Schliemann, A. (2016). Powerful ideas in elementary school mathematics. En L. English y D. Kirshner (Eds.), Handbook of international research in mathematics education. Third edition (pp. 191-218). Routledge.

Carraher, D. W., Martínez, M. V. y Schliemann, A. D. (2008). Early algebra and mathematical generalization. ZDM, 40(1), 3-22. https://doi.org/10.1007/s11858-007-0067-7

Castellanos, M. T., Flores, P. y Moreno, A. (2018). Reflexión en el prácticum: Un experimento de enseñanza con estudiantes colombianos. Profesorado, Revista de Currículum y Formación del Profesorado, 22(1), 429-455. https://revistaseug.ugr.es/index.php/profesorado/article/view/9935

Driscoll, M. J. (1999). Fostering algebraic thinking: A guide for teachers, Grades 6-10. Heinemann.

Ellis, A. B. (2007). A taxonomy for categorizing generalizations: Generalizing actions and reflection generalizations. The Journal of the Learning Sciences, 16, 221-262. https://doi.org/10.1080/10508400701193705

Filloy, E., Puig, L. y Rojano, T. (2008). Educational algebra. A theoretical and empirical approach. Springer. https://doi.org/10.1007/978-0-387-71254-3

Kaput, J. (2000). Transforming algebra from an engine of inequity to an engine of mathematical power by “algebrafying” the K-12 curriculum. National Center for Improving Student Learning and Achievement in Mathematics and Science.

Kaput, J. J., Blanton, M. J. y Moreno, L. (2008). Algebra from a symbolization point of view. En J. J. Kaput, D. W. Carraher y M. L. Blanton (Eds.), Algebra in the early grades (pp. 19-55). Lawrence Erlbaum Associates. https://doi.org/10.4324/9781315097435-3

Kieran, C. (2004). Algebraic thinking in the early grades: What is it? The Mathematics Educator, 18(1), 139-151.

Mason, J. (1996). Expressing generality and roots of algebra. En N. Bednarz, C. Kieran y L. Lee (Eds.), Approaches to algebra: Perspectives for research and teaching (pp. 65-86). Kluwer. https://doi.org/10.1007/978-94-009-1732-3_5

Merino, E., Cañadas, M. C y Molina, M. (2013). Uso de representaciones y patrones por alumnos de quinto de educación primaria en una tarea de generalización. Edma 0-6: Educación Matemática en la Infancia, 2(1), 24-40.

Molina, M. (2006). Desarrollo de pensamiento relacional y comprensión del signo igual por alumnos de tercero de educación primaria [Tesis doctoral]. Universidad de Granada, Granada.

Molina, M., Castro, E., Molina, J. L. y Castro, E. (2011). Un acercamiento a la investigación de diseño a través de los experimentos de enseñanza. Enseñanza de las Ciencias, 29(1), 75-88. https://doi.org/10.5565/rev/ec/v29n1.435

Morales, R., Cañadas, M. C., Brizuela, B. M. y Gómez, P. (2018). Relaciones funcionales y estrategias de alumnos de primero de Educación Primaria en un contexto funcional. Enseñanza de las Ciencias, 36(3), 59-78. https://doi.org/10.5565/rev/ensciencias.2472

Mulligan, J. y Mitchelmore, M. (2009). Awareness of pattern and structure in early mathematical development. Mathematics Education Research Journal, 21(2), 33-49. https://doi.org/10.1007/BF03217544

Pinto, E. y Cañadas, M. C. (2017a). Generalization in fifth graders within a functional approach. En B. Kaur, W. K. Ho, T. L. Toh y B. H. Choy (Eds.), Proceedings of the 41st Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 49-56). PME.

Pinto, E. y Cañadas, M. C. (2017b). Functional thinking and generalization in third year of primary school. En B. Kaur, W. K. Ho, T. L. Toh y B. H. Choy (Eds.), Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education (pp. 472-479). DCU Institute of Education and Erme.

Pólya, G. (1945). How to solve it. University Press. (Traducción al castellano: J. Zugazagoitia, 1965. Cómo plantear y reslover problemas. Trillas). https://doi.org/10.1515/9781400828678

Pólya, G. (1966). Matemáticas y razonamiento plausible. Tecnos

Radford, L. (1997). L’invention d’une idée mathématique: la deuxième inconnue en algèbre, Repères (Revue des instituts de Recherche sur l’enseignement des Mathématiques de France), juillet, 28, 81-96.

Radford, L. (2010). Layers of generality and types of generalization in pattern activities. PNA, 4(2), 37-62.

Radford, L. (2018). The emergence of symbolic algebraic thinking in primary school. En C. Kieran (Ed.), Teaching and learning algebraic thinking with 5-to 12- year-olds: The global evolution of an emerging field of research and practice. Springer. https://doi.org/10.1007/978-3-319-68351-5_1

Thompson, P. W. (1994). Students, functions, and the undergraduate curriculum. En E. Dubinsky, A. H. Schoenfeld y J. J. Kaput (Eds.), Research in collegiate Mathematics Education (Vol. 4, pp. 21-44). American Mathematical Society.

Torres, M. D., Cañadas, M. C. y Moreno, A. (2018). Estructuras, generalización y significado de letras en un contexto funcional por estudiantes de 2º de primaria. En L. J. Rodríguez-Muñiz, L. Muñiz- Rodríguez, A. Aguilar-González, P. Alonso, F. J. García García y A. Bruno (Eds.), Investigación en Educación Matemática XXII (pp. 574-583). SEIEM.

Torres, M. D., Cañadas, M. C. y Moreno, A. (2019). Estructuras y representaciones de alumnos de 2º de primaria en una aproximación funcional del pensamiento algebraico. En J. M. Marbán, M. Arce, A. Maroto, J. M. Muñoz-Escolano y Á. Alsina (Eds.), Investigación en educación matemática XXIII (pp. 573-582). SEIEM.

Vergel, R. (2014). Formas de pensamiento algebraico temprano en alumnos de cuarto y quinto grados de educación básica primaria (9-10 años) [Tesis doctoral]. Universidad Distrital Francisco José de Caldas.

Vergel, R. (2015). Generalización de patrones y formas de pensamiento algebraico temprano. PNA, 9(3), 193-215.

Warren, E. y Cooper, T. (2005). Introducing functional thinking in Year 2: A case study of early algebra teaching. Contemporary Issues in Early Childhood, 6(2), 150-162. https://doi.org/10.2304/ciec.2005.6.2.5

Warren, E., Miller, J y Cooper, T. J. (2013). Exploring young students’ functional thinking. PNA, 7(2), 75-84.

Published

2021-07-31

Issue

Section

Original scientific papers (evaluated by academic peers)

Comentarios (ver términos de uso)

Most read articles by the same author(s)

<< < 22 23 24 25 26 27 28 29 30 31 > >>