Surface water quality and socio-environmental pressures in the upper microbasin of the Poás river
DOI:
https://doi.org/10.15359/ru.36-1.24Keywords:
Water quality, surface water, quality index, socio environmental characteristics, watershed, PoásAbstract
The objective of this research was to determine the quality of surface water in the upper part of the Poás river micro basin and the main socio-environmental pressures that may be related to current quality indices. An exploratory study with a quantitative approach was carried out in which the main socio-environmental pressures experienced by the water resource in the area were identified, while the quality of the surface water was determined based on physical, chemical, and microbiological indicators, as well as the application of two quality indices. Six socio-environmental pressures with a negative impact on the resource were found and related to specific actions carried out in homes and other socio-economic activities. Despite the fact that the evidence showed overall compliance between the analyzed parameters and quality criteria used nationally and internationally, the indices revealed incipient contamination levels, as well as good and medium quality. Statistically, it was found that water quality of the micro-basin does not vary spatially; however, it does vary temporarily due to the incidence of rainfall patterns in the area. This finding, along with the determination of significant correlations between the monitored parameters, contributed to the recognition that the sites monitored in the rainy season have a stronger relationship with parameters associated with organic pollution linked to runoff and wastewater discharge processes. Therefore, it is necessary to coordinate efforts that guarantee sustainability of the micro basin that improve the local sanitary infrastructure, strengthen water management processes, and are focused on the establishment of a monitoring network within a reference framework oriented towards basins.
References
Aho, K. (2014). Asbio: A collection of statistical tools for biologists. R Package version, 1-1.
Adegbite, S. A., Adeleke, A. E., Sangoremi, A., & Oladele, E. O. (2018). Seasonal variations of physicochemical characteristics of brewery industry effluent and receiving water of Ikpoba-Oha Rivers, Benin City, Nigeria. Journal of Applied Sciences and Environmental Management, 22(6), 857. https://doi.org/10.4314/jasem.v22i6.3
Alvarado-García, V., Pérez-Gómez, G., & Gastezzi-Arias, P. (2020). Calidad del ecosistema urbano del río Torres, San José, Costa Rica: factores bióticos y abióticos. Cuadernos de Investigación UNED, 12(2), 527–542. https://doi.org/http://dx.doi.org/10.22458/urj.v12i2.3016
Anderson, E. P., Jackson, S., Tharme, R. E., Douglas, M., Flotemersch, J. E., Zwarteveen, M., Lokgariwar, C., Montoya, M., Wali, A., Tipa, G. T., Jardine, T. D., Olden, J. D., Cheng, L., Conallin, J., Cosens, B., Dickens, C., Garrick, D., Groenfeldt, D., Kabogo, J., & Arthington, A. H. (2019). Understanding rivers and their social relations: A critical step to advance environmental water management. WIREs Water, 6(6), 1–21. https://doi.org/10.1002/wat2.1381
Angulo, F. (2020). Patrones e impactos del uso de la energía y el agua en Costa Rica: investigación de base. PEN. https://repositorio.conare.ac.cr/handle/20.500.12337/7985
APHA, AWWA, & WEF. (2012). Standard Methods for the Examination of Water & Wastewater; Rice, E., Baird, R., Eaton, A., Clesceri, L. (Eds.); Port City Press, pp 2–13, 2–64, 2–69, 4–5, 4–92, 4–115, 4–143, 4-152.
Asmat, A., Hazali, N. A., Nor, A. N. M., & Zuhan, F. K. (2018). Seasonal-spatial of Putrajaya Lake Water Quality Parameter (WQP) concentration using Geographic Information System (GIS). International Journal of Engineering and Technology (UAE), 7(3), 176–181. https://doi.org/10.14419/ijet.v7i3.11.15956
Ayandiran, T. A., Fawole, O. O., & Dahunsi, S. O. (2018). Water quality assessment of bitumen polluted Oluwa River, South-Western Nigeria. Water Resources and Industry, 19, 13–24. https://doi.org/10.1016/j.wri.2017.12.002
Bartram, J., & Ballance, R. (1996). Water quality monitoring: a practical guide to the design and implementation of freshwater quality studies and monitoring programmes. E & FN Spon. https://doi.org/10.4324/9780203476796
Blair, R. C., Higgins, J. J., Karniski, W., & Kromrey, J. D. (1994). Multivariate behavioral a study of multivariate permutation tests which may replace Hotelling’ s T2 test in prescribed circumstances. Multivar Behav Res, 29(2), 141–163. https://doi.org/10.1207/s15327906mbr2902_2
Bouwman, A. F., Beusen, A. H. W., & Billen, G. (2009). Human Alteration of the Global Nitrogen and Phosphorus Soil Balances for the Period 1970-2050. Global Biogeochem. Cycles, 23(4), 1–16. https://doi.org/10.1029/2009GB003576
Calvo-Brenes, G., & Mora-Molina, J. (2012). Análisis de la calidad de varios cuerpos de agua superficiales en el GAM y la Península de Osa utilizando el índice holandés. Revista Tecnología En Marcha, 25(5), 37. https://doi.org/10.18845/tm.v25i5.471
Chapman, D. (1996). Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring (pp 1–609). F & FN Spon.
Converse, R. R., Piehler, M. F., & Noble, R. T. (2011). Contrasts in Concentrations and Loads of Conventional and Alternative Indicators of Fecal Contamination in Coastal Stormwater. Water Res. 45(16), 5229–5240. https://doi.org/10.1016/j.watres.2011.07.029
Decreto N.° 33903-MINAE-S de 2007 [Ministerio de Ambiente y Energía, Ministerio de Salud]. Reglamento para la Evaluación y Clasificación de la Calidad de Cuerpo de Agua Superficiales. 17 de setiembre de 2007.
Dirección de Agua. (2020). Estrategia nacional para la recuperación de cuencas urbanas 2020-2030. http://www.da.go.cr/estrategia-rios-limpios/
Fernandes, M. R., Aguiar, F. C., Martins, M. J., Rivaes, R. & Ferreira, M. T. (May, 2020). Long-Term Human-Generated Alterations of Tagus River: Effects of Hydrological Regulation and Land-Use Changes in Distinct River Zones. Catena (1) https://doi.org/10.1016/j.catena.2020.104466
Flanagan, P. (2001). Parameters of Water Quality: Interpretation and Standards. Environmental Protection Agency. https://doi.org/10.1108/dpm.2000.07309aag.008
Global Water Partnership (GWP). (2017). Situación de los recursos hídricos en Centroamérica: Hacia una gestión integrada. Global Water Partnership Central America, 100.
Good, P. (2009). Permutation Test: a practical guide to resampling meth- ods for testing hypotheses. In Bickel P, Diggle P, Fienberg S, Krickeberg K, Olkin I, Wermuth N, Zeger S (Eds.) (2nd ed.). Springer. https://doi.org/10.1007/978-1-4757-3235-1
Gu, Q., Hu, H., Ma, L., Sheng, L., Yang, S., Zhang, X., Zhang, M., Zheng, K., & Chen, L. (2019). Characterizing the spatial variations of the relationship between land use and surface water quality using self-organizing map approach. Ecological Indicators, 102(December 2018), 633–643. https://doi.org/10.1016/j.ecolind.2019.03.017
Helsel, D. R. (2012). Statistics for Censored Environmental Data Using Minitab an R. John Wiley & Sons, Inc. All. https://doi.org/10.1002/9781118162729
Hernando Echeverría, L., Patterson, O., Ruiz, A., Ramos, R., & Garro, L. (2004). Manejo y ordenamiento territorial de cuencas de Costa Rica: El caso de la microcuenca del río Poás. In Revista geográfica de América Central, 40, 101–112.
Herrera-Murillo, J. (2017). Uso y estado de los recursos: Recurso hídrico. Informe Estado de la Nación en Desarrollo Sostenible 2017 (pp. 3–31). Programa Estado de la Nación. http://estadonacion.or.cr
Hu, M., Wang, Y. Du, P., Shui, Y., Cai, A., Lv, C., Bao, Y., Li, Y., Li, S., & Zhang, P. (2019). Tracing the Sources of Nitrate in the Rivers and Lakes of the Southern Areas of the Tibetan Plateau Using Dual Nitrate Isotopes. Sci. Total Environ. 658, 132–140. https://doi.org/10.1016/j.scitotenv.2018.12.149
Hui, L., Daphne, X., Utomo, H. D., Zhi, L., & Kenneth, H. (2011). Correlation between Turbidity and Total Suspended Solids in, 1(3), 313–322. https://doi.org/10.11912/jws.1.3.313-322
Hur, J., & Jung, M. C. (2009). The Effects of Soil Properties on the Turbidity of Catchment Soils from the Yongdam Dam Basin in Korea. Environ. Geochem. Health, 31(3), 365–377. https://doi.org/10.1007/s10653-008-9176-7
Hussain, B., Sultana, T., Sultana, S., Al-Mulhim, N., & Mahboob, S. (2018). Pollutant fate and spatio-temporal variation and degree of sedimentation of industrial- and municipal wastes in Chakbandi drain and River Chenab. Saudi Journal of Biological Sciences, 25(7), 1326–1331. https://doi.org/10.1016/j.sjbs.2018.08.015
Instituto Nacional de Estadística y Censo. (2011). Censo Nacional 2011.
Irvine, K. N., Somogye, E. L., & Pettibone, G. W.(2002). Turbidity, Suspended Solids, and Bacteria Relationships in the Buffalo River Watershed. Middle States Geogr, 35, 42–51.
Jovanelly, T. J., Rodríguez-Montero, L., Sánchez-Gutiérrez, R., Mena-Rivera, L., & Thomas, D. (2020). Evaluating watershed health in Costa Rican national parks and protected areas. Sustainable Water Resources Management, 6(5), 1–14. https://doi.org/10.1007/s40899-020-00431-6
Kändler, M., Blechinger, K., Seidler, C., Pavlů, V., Šanda, M., Dostál, T., Krása, J., Vitvar, T., & Štich, M. (2017). Impact of land use on water quality in the upper Nisa catchment in the Czech Republic and in Germany. Science of the Total Environment, 586, 1316–1325. https://doi.org/10.1016/j.scitotenv.2016.10.221
Kamble, S. M. (2014). Water Pollution and Public Health Issues in Kolhapur City in Maharashtra. International Journal of Scientific and Research Publications, 4(1), 1–6.
Lê, S., Josse, J., & Husson, F. (2008). “FactoMineR: A Package for Multivariate Analysis.” Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01
Lee, L. (2017). NADA: Nondetects and Data Analysis for Environmental Data. R Package version, 1.6-1.1. https://CRAN.R-project.org/package=NADA
Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of Factor Analysis in the Assessment of Groundwater Quality in a Blackfoot Disease Area in Taiwan. Sci. Total Environ, 313 (1–3), 77–89. https://doi.org/10.1016/S0048-9697(02)00683-6
Malaj, E., Von Der Ohe, P. C., Grote, M., Kühne, R., Mondy, C. P., Usseglio-Polatera, P., Brack, W., & Schäfer, R. B. (2014). Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proceedings of the National Academy of Sciences of the United States of America, 111(26), 9549–9554. https://doi.org/10.1073/pnas.1321082111
Masís, F., Valdés, J., Coto, T., & León, S. (2015). Residuos de agroquímicos en sedimentos de ríos, Poás, Costa Rica. Agron. Costaricense, 32(1), 113–123.
Mena-Rivera, L., Vásquez-Bolaños, O., Gómez- Castro, C., Fonseca-Sánchez, A., Rodríguez- Rodríguez, A., & Sánchez-Gutiérrez, R. (2018). Ecosystemic Assessment of Surface Water Quality in the Virilla River: towards Sanitation Processes in Costa Rica. Water, 10(7), 1-16. doi: https://doi.org/10.3390/w10070845
Mena-Rivera, L., Salgado-Silva, V., Benavides-Benavides, C., Coto-Campos, J. M., & Swinscoe, T. H. A. (2017). Spatial and seasonal surface water quality assessment in a tropical urban catchment: Burío River, Costa Rica. Water (Switzerland), 9(8). https://doi.org/10.3390/w9080558
Mendoza, A., Soto-Cortes, G., Priego-Hernandez, G., & Rivera-Trejo, F. (2019). Historical Description of the Morphology and Hydraulic Behavior of a Bifurcation in the Lowlands of the Grijalva River Basin, Mexico. Catena, 176, 343–351. https://doi.org/10.1016/j.catena.2019.01.033
Merck, E. (2005). Microbiology Manual, Fluorocult® LMX Broth Modified. Merck.
Meybeck, M. (2003). Global analysis of river systems: From Earth system controls to Anthropocene syndromes. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1440), 1935–1955. https://doi.org/10.1098/rstb.2003.1379
Mukaka, M. M. (2012). Statistics Corner: A Guide to Appropriate Use of Correlation Coefficient in Medical Research. Malawi Med. J. 24, 69–71.
Njuguna, S. M., Onyango, J. A., Githaiga, K. B., Gituru, R. W., & Yan, X. (2020). Application of multivariate statistical analysis and water quality index in health risk assessment by domestic use of river water. Case study of Tana River in Kenya. Process Safety and Environmental Protection, 133(November 2019), 149–158. https://doi.org/10.1016/j.psep.2019.11.006
Pérez-Gómez, G., Alvarado-García, V., Rodríguez-Rodríguez, A., Herrera, F., & Sánchez-Gutiérrez, R. (2021). Calidad fisicoquímica y microbiológica del agua superficial del río Grande de Tárcoles, Costa Rica: Un enfoque ecológico. UNED Research Journal, 13(1). https://doi.org/https://doi.org/10.22458/urj.v13i1.3148
Peto, R., & Peto, J. (1972). Asymptotically Efficient Rank Invariant Test Procedures. Journal of the Royal Statistical Society, 135(2), 185–207. https://doi.org/10.2307/2344317
Phiri, O., Mumba, P., Moyo, B. H. Z. & Kadewa, W. (2005). Assessment of the impact of industrial effluents on water quality of receiving rivers in urban areas of Malawi. International Journal of Environmental Science and Technology, 2(3), 237–244. https://doi.org/10.1007/BF03325882
Pouladi, P., Afshar, A., Afshar, M. H., Molajou, A., & Farahmand, H. (2019). Agent-based socio-hydrological modeling for restoration of Urmia Lake: Application of theory of planned behavior. Journal of Hydrology, 576(February), 736–748. https://doi.org/10.1016/j.jhydrol.2019.06.080
Prentice, R. L. (1978). Linear rank tests with right censored data. Biometrika, 65(1), 167–169. https://doi.org/10.2307/2335292
Prentice, R. L. & Marek, P. (1979). A Qualitative Discrepancy between Censored Data Rank Tests. Biometrics, 35(4), 861. https://doi.org/10.2307/2530120
Programa Estado de la Nación. (2021). Sexto Estado de la Región 2021. https://estadonacion.or.cr/informes/
Qadir, A., Malik, R. N. & Husain, S. Z. (2008). Spatio-Temporal Variations in Water Quality of Nullah Aik-Tributary of the River Chenab, Pakistan. Environ. Monit. Assess. 140 (1–3), 43–59. https://doi.org/10.1007/s10661-007-9846-4
Quirós Arias, L. & Alfaro Chavarría, C. (2011). Dinámica territorial asociada a la actividad agropecuaria en el cantón de Poás, Alajuela. Revista Geográfica de América Central, 1(46), 155–184.
R Core Team (2020). The R Project for statistical computing. https://www.r-project.org
Sánchez-Gutiérrez, R., & Gómez-Castro, C. (2021). Approaching to water quality modeling processes in a subwatershed. The Virilla River case in Costa Rica. Uniciencia, 35(1), 71–89. https://doi.org/10.15359/RU.35-1.5
Seiyaboh, E., Gijo, A., & Alagha, W. (2016). Spatial and Seasonal Variation in Physico-chemical Quality of Ikoli Creek, Niger Delta, Nigeria. Greener Journal of Environmental Management and Public Safety, 5(5), 104–109. https://doi.org/10.15580/gjemps.2016.5.122116219
Sinharoy, S. S., Pittluck, R., & Clasen, T. (2019). Review of drivers and barriers of water and sanitation policies for urban informal settlements in low-income and middle-income countries. Utilities Policy, 60(August), 100957. https://doi.org/10.1016/j.jup.2019.100957
Sistema de Información Ambiental Territorial de la Amazonia Colombiana. (2020). Presiones socioambientales - metodología http://siatac.co/web/guest/metodologia (accesado, 23 de febrero 2021).
Udeigwe, T. K., Wang, J. J., & Zhang, H. (2007). Predicting Runoff of Suspended Solids and Particulate Phosphorus for Selected Louisiana Soils Using Simple Soil Tests. J. Environ. Qual, 36 (5), 1310–1317. https://doi.org/10.2134/jeq2006.0314
Van Drecht, G., Bouwman, A. F., Harrison, J., & Knoop, J. M. (2009). Global Nitrogen and Phosphate in Urban Wastewater for the Period 1970 to 2050. Global Biogeochem. Cycles. 23 (3), 1–19. https://doi.org/10.1029/2009GB003458
Wantzen, K. M., Ballouche, A., Longuet, I., Bao, I., Bocoum, H., Cissé, L., Chauhan, M., Girard, P., Gopal, B., Kane, A., Marchese, M. R., Nautiyal, P., Teixeira, P., & Zalewski, M. (2016). River Culture: An eco-social approach to mitigate the biological and cultural diversity crisis in riverscapes. Ecohydrology and Hydrobiology, 16(1), 7–18. https://doi.org/10.1016/j.ecohyd.2015.12.003
Waziri, M., & Akinniyi, J. (2012). Assessment of the physicochemical characteristics of rain and runoff water in University of Maiduguri–Nigeria staff quarters. American Journal of Scientific and Industrial Research, 3(2), 99–102. https://doi.org/10.5251/ajsir.2012.3.2.99.102
Wickham, H. (2016). Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4. http://ggplot2.tidyverse.org
Woomer, P. L. (1994). Most probable number counts. Methods of Soil Analysis: Part 2. Microbiological and Biochemical Properties, 5, 59-79. https://doi.org/10.2136/sssabookser5.2.c5
World Economic Forum. (2019). Global Risks Report 2019. Geneva Switzerland, p. 114.
Wu, Z., Wang, X., Chen, Y., Cai, Y., & Deng, J. (2018). Assessing River Water Quality Using Water Quality Index in Lake Taihu Basin, China. Sci. Total Environ. 612, 914–922. https://doi.org/10.1016/j.scitotenv.2017.08.293
Xu, G., Li, P., Lu, K., Tantai, Z., Zhang, J., Ren, Z., Wang, X., Yu, K., Shi, P., & Cheng, Y. (2019). Seasonal Changes in Water Quality and Its Main Influencing Factors in the Dan River Basin. Catena, 173, 131–140. https://doi.org/10.1016/j.catena.2018.10.014
Yu, S., Xu, Z., Wu, W., & Zuo, D. (2016). Effect of Land Use Types on Stream Water Quality under Seasonal Variation and Topographic Characteristics in the Wei River Basin, China. Ecol. Indic, 60, 202–212. https://doi.org/10.1016/j.ecolind.2015.06.029
Ziegler, A. D., Benner, S. G., Tantasirin, C., Wood, S. H., Sutherland, R. A., Sidle, R. C., Jachowski, N., Nullet, M. A., Xi, L. X., Snidvongs, A., Giambelluca, T. W., & Fox, J. M. (2014). Turbidity-based sediment monitoring in northern Thailand: Hysteresis, variability, and uncertainty. Journal of Hydrology, 519(PB), 2020–2039. https://doi.org/10.1016/j.jhydrol.2014.09.010
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors guarantee the journal the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
2. Authors can set separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, place it in an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
3. The authors have declared to hold all permissions to use the resources they provided in the paper (images, tables, among others) and assume full responsibility for damages to third parties.
4. The opinions expressed in the paper are the exclusive responsibility of the authors and do not necessarily represent the opinion of the editors or the Universidad Nacional.
Uniciencia Journal and all its productions are under Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
There is neither fee for access nor Article Processing Charge (APC)