Towards a characterization of algebraic competence: an exploratory study with students

Authors

DOI:

https://doi.org/10.15359/ru.36-1.40

Keywords:

Algebraic competence, algebraic reasoning, algebraic tasks, mathematics education, university students

Abstract

[Objective] The present article seeks to determine the algebraic competence displayed by a group of 27 university students in Mexico when they worked on an algebraic problem. A study framework is proposed based on the investigation of mathematical competence and levels of algebrization  in three areas: solving, interpreting and validating. [Methodology] A qualitative and exploratory study with convenience-based selection of students was implemented during a regular two-hour class. The professor and the researcher were present when the task was carried out in the classroom. [Results] The results show that the students had difficulties in problem solving because they did not effectively manipulate symbolic-literal expressions, and did not achieve the expected level of algebraization. They were also inconsistent in interpreting the task – that is, they did not identify or connect knowledge about the properties of the operations necessary to solve the algebraic problem. When validating their responses, they provided descriptive proofs or verifications. [Conclusions] The findings suggest that most of the participants did not display a basic level of algebraic competence, and the necessity of formulating stages of development based on the three actions is discussed.

References

Abrantes, P. (2001). Mathematical competence for all: Options, implications and obstacles. Educational Studies in Mathematics, 47(2), 125-143.

Aké, L. P., & Larios, V. (2020). Competencia algebraica de profesores de matemáticas. Educação Matemática Pesquisa: Revista do Programa de Estudos Pós-Graduados em Educação Matemática, 22(1), 512-531. https://doi.org/10.23925/1983-3156.2020v22i1p512-531

Alfaro-Carvajal, C., Flores-Martínez, P., & Valverde-Soto, G. (2019). Mathematical proof: meaning, types, attributed functions, and relevance as part of math teachers’ professional knowledge. Uniciencia, 33(2), 55-75. https://doi.org/10.15359/ru.33-2.5

Alsina, Á., & Vásquez, C. (2016). De la competencia matemática a la alfabetización probabilística en el aula: Elementos para su caracterización y desarrollo. UNIÓN. Revista Iberoamericana de Educación Matemática, 48, 41-58.

Angriani, V., & Herman, T. (2019). Algebraic literacy as the sustainable development skills. International Conference on Mathematics and Science Education, 4,105-109.

Booth, J. L., McGinn, K. M., Barbieri, C., & Young, L. K. (2017). Misconceptions and learning algebra. En S. Stewart (Ed.), In And the rest is just algebra, (pp. 63-78). Springer. https://doi.org/10.1007/978-3-319-45053-7_4

Burgos, M., & Godino, J. D. (2019). Emergencia de razonamiento proto-algebraico en tareas de proporcionalidad en estudiantes de primaria. Educación Matemática, 31(3), 117-150.

Burgos, M., & Godino, J. D. (2021). Prospective Primary School Teachers’ Competence for the Cognitive Analysis of Students’ Solutions to Proportionality Tasks. Journal für Mathematik-Didaktik, 42(2), 1-30. https://doi.org/10.1007/s13138-021-00193-4

Burgos, M., & Godino, J. D. (2022). Assessing the Epistemic Analysis Competence of Prospective Primary School Teachers on Proportionality Tasks. International Journal of Science and Mathematics Education, 20(2), 367-389. https://doi.org/10.1007/s10763-020-10143-0

Caraballo, R. M., Rico, L., & Lupiáñez, J. L. (2013). Cambios conceptuales en el marco teórico de PISA: El caso de las matemáticas. Profesorado, revista de curriculum y formación del profesorado, 17(2), 225-241.

Creswell, J. W. (2009). Research Design: qualitative, quantitative, and mixed methods approach. Sage.

Cuesta, A., Escalante, J. E., & Méndez, M. A. (2013). Impacto de los cursos universitarios en la formación de competencias algebraicas. Educación matemática, 25(1), 35-62.

Fakhrunisa, F., & Hasanah, A. (2020). Students’ algebraic thinking: a study of mathematical modelling competencies. Journal of Physics: Conference Series, 1521(3), 1-7. http://doi.org/10.1088/1742-6596/1521/3/032077

Filloy, E., Puig, L., & Rojano, T. (2008) Educational algebra. A theorical and empirical approach. Springer. https://doi.org/10.1007/978-0-387-71254-3

Flores-Samaniego, A. H. (2007). Esquemas de argumentación en profesores de matemáticas del bachillerato. Educación matemática, 19(1), 63-98.

Godino, J. D. (2002). Un enfoque ontológico y semiótico de la cognición matemática. Recherches en Didactiques des Mathematiques, 22(2/3), 237-284.

Godino, J. D., Aké, L. P., Contreras, A., Díaz, C., Estepa, A. Blanco, T. F., Lacasta, E., Lasa, A., Neto, T., Oliveras, M. L., & Wilhelmi, M. R. (2015). Diseño de un cuestionario para evaluar conocimientos didáctico - matemáticos sobre razonamiento algebraico elemental. Enseñanza de las Ciencias, 33(1), 127 - 150. https://doi.org/10.5565/rev/ensciencias.1468

Godino, J. D., Castro, W. F., Aké, L. P., & Wilhelmi, M. (2012). Naturaleza del razonamiento algebraico elemental. Boletim de Educação Matemática - BOLEMA, 26(42B), 483-511. http://dx.doi.org/10.1590/S0103-636X2012000200005

Godino, J. D., Giacomone, B., Batanero, C., & Font, V. (2017). Enfoque ontosemiótico de los conocimientos y competencias del profesor de matemáticas. Bolema, 31(57), 90-113. https://doi.org/10.1590/1980-4415v31n57a05

Godino, J. D., Rivas, M., Castro, W., & Konic, P. (2012). Desarrollo de competencias para el análisis didáctico del profesor de matemáticas. Revemat: Revista Eletrônica de Educação Matemática, 7 (2), 1-21. https://doi.org/10.5007/1981-1322.2012v7n2p1

Godino, J. D., Wilhelmi, M. R., Neto, T., Blanco, T. F., Contreras, A., Díaz-Batanero, C., Estepa, A., & Lasa, A. (2016). Evaluación de conocimientos didáctico - matemáticos sobre razonamiento algebraico elemental de futuros maestros. Revista de Educación, 370, 199-228. https://doi.org/10.4438/1988-592x-re-2015-370-303

Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. American Mathematical Society, 7, 234-283.

Ibarrola, M., & Martínez, M. (2018). Conformación de una identidad docente entre profesionistas universitarios contratados por asignatura en el nivel medio superior. Sinéctica, 51(8). https://doi.org/10.31391/s2007-7033(2018)0051-008

Leatham, K. R. (Ed.). (2019). Designing, Conducting, and Publishing Quality Research in Mathematics Education. Springer. http://doi.org/10.1007/978-3-030-23505-5

Martínez, C., Aké, L. P., & López-Mojica, M. (2017). La linealidad como obstáculo epistemológico para el razonamiento algebraico: argumentos de alumnos de bachillerato a errores frecuentes y persistentes. En L. P. Aké & J. Cuevas (Coords.), Pensamiento algebraico en México desde diferentes enfoques (pp. 149-174). Cenejus. https://www.researchgate.net/publication/332817427_Pensamiento_Algebraico_en_Mexico_desde_diferentes_enfoques

National Council of teachers of mathematics – NCTM. (2009). Focus in high school mathematics: Reasoning and making sense. NCTM.

NCTM. (2010). Focus in high school mathematics: Reasoning and making sense in Algebra. NCTM.

Niss, M. (2002). Mathematical competencies and the learning of mathematics: the Danish Kom Project. Roskilde University.

Niss, M. A., & Højgaard, T. (2011). Competencies and mathematical learning: Ideas and inspiration for the development of mathematics teaching and learning in Denmark. Roskilde Universitet.

Niss, M. A., & Højgaard, T. (2019). Mathematical competencies revisited. Educational Studies in Mathematics, 102, 9–28. https://doi.org/10.1007/s10649-019-09903-9

Organisation for Economic Cooperation and Development (OECD). (2005). Informe PISA 2003. Aprender para el mundo de mañana. Santillana

Organisation for Economic Cooperation and Development (OECD). (2013). PISA 2012 Assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy. OECD Publishing.

Organisation for Economic Cooperation and Development (OECD). (2003). The PISA 2003 Assessment framework. Mathematics, reading, science and problem solving knowledge and skills. OECD Publishing.

Pande, P., & Chandrasekharan, S. (2017). Representational competence: towards a distributed and embodied cognition account. Studies in Science Education, 53(1), 1-43. https://doi.org/10.1080/03057267.2017.1248627

Planas, N., & Morera, L. (2012). La argumentación en la matemática escolar: Dos ejemplos para la formación del profesorado. En E. Badillo, L. García, A. Marbá, & M. Briceño (Eds.), El desarrollo de competencias en las clases de ciencias y matemáticas, (pp. 275-300). Universidad de los Andes.

Rasmussen, C., Wawro, M., & Zandieh, M. (2015). Examining individual and collective level mathematical progress. Educational Studies in Mathematics, 88(2), 259-281. https://doi.org/10.1007/s10649-014-9583-x

Rico, L. (2007). La competencia matemática en PISA. PNA, 1(2), 47-66. https://revistaseug.ugr.es/index.php/pna/article/view/6215

Säfström, A. I. (2013). Exercising mathematical competence: Practising representation theory and representing mathematical practice [Tesis doctoral]. University of Gothenburg, Gothermburg, Sweden. http://hdl.handle.net/2077/32484

Solar, H., García, B., Rojas, F., & Coronado, A. (2014). Propuesta de un modelo de competencia matemática como articulador entre el currículo, la formación de profesores y el aprendizaje de los estudiantes. Educación Matemática, 26(2), 33-67.

Syawahid, M. (2019). Mathematical Literacy in Algebra Reasoning. International Journal of Insight for Mathematics Teaching, 2(1), 33-46.

Published

2022-11-01

Issue

Section

Original scientific papers (evaluated by academic peers)

Comentarios (ver términos de uso)

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>