Knowledge used by preservice teaching students when comparing areas of 2D figures
DOI:
https://doi.org/10.15359/ru.36-1.41Keywords:
Areas of flat figures, specialized knowledge, knowledge of topics, knowledge of the structure of mathematics, registers of representationAbstract
[Objective] This study seeks to characterize the specialized mathematical knowledge that preservice teachers make use of when solving tasks that involve comparison of areas of flat figures. [Methodology] Seventy (70) preservice teachers, in the third year of the Primary Education degree at the Universidad Autónoma de Barcelona during the period 2020-21, participated in the study. Preservice teachers answered a semi-structured open-ended questionnaire, which included eight tasks. A qualitative content analysis was carried out to analyze the procedures and justifications used by preservice teachers when solving two tasks. The analysis focuses on two of the subdomains of the Mathematics Teacher’s Specialized Knowledge model, Knowledge of Topics and of the Structure of Mathematics. [Results] The use of procedures related to the decomposition and reorganization of surfaces facilitates making use of categories of specialized knowledge, and establishing connections with other types of mathematical content. Furthermore, coordination of different registers of representation makes it possible to establish intra conceptual connections in the solution of the two tasks presented. [Conclusions] Representations, in their discursive and non-discursive registers, are presented as key indicators which assist in making explicit the procedures used by preservice teachers, and based on them, the justifications, properties and geometric principles that support the resolution process.
References
Aguilar-González, Á., Muñoz-Catalán, M. C. & Carrillo, J. (2018). An example of connections between the mathematics teacher’s conceptions and specialised knowledge. EURASIA Journal of Mathematics, Science and Technology Education, 15(2), 1-15. https://doi.org/10.29333/ejmste/101598
Aslan-Tutak, F. & Adams, T. (2017). A study of geometry content knowledge of elementary preservice teachers. International Electronic Journal of Elementary Education, 7(3), 301-318. https://files.eric.ed.gov/fulltext/EJ1068059.pdf
Bailey, K. (2007). Methods of Social Research. New York: The free press.
Ball, D. L., Thames, M. & Phelps, G. (2008). Content Knowledge for Teaching: What Makes It Special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/0022487108324554
Baturo, A. & Nason, R. (1996). Student teachers' subject matter knowledge within the domain of area measurement. Educational studies in mathematics, 31(3), 235-268. https://doi.org/10.1007/BF00376322
Carpenter, T. P., Fennema, E., Peterson, P. & Carey, D. (1988). Teachers' pedagogical content knowledge of students' problem solving in elementary arithmetic. Journal for research in mathematics education, 19(5), 385-401. https://web.phys.ksu.edu/current/seminar/f10/pckcarpenter.pdf
Carrillo, J., Climent, N., Montes, M., Contreras, L. C., Flores-Medrano, E., Escudero-Ávila, D., ... & Ribeiro, M. (2018). The mathematics teacher’s specialised knowledge (MTSK) model. Research in Mathematics Education, 20(3), 236-253. https://doi.org/10.1080/14794802.2018.1479981
Caviedes, S., De Gamboa, G. & Badillo, E. (2019). Conexiones matemáticas que establecen maestros en formación al resolver tareas de medida y comparación de áreas. Praxis, 15(1), 69-87. https://doi.org/10.21676/23897856.2984
Caviedes, S., De Gamboa, G. & Badillo, E. (2020). Procedimientos utilizados por estudiantes de 13-14 años en la resolución de tareas que involucran el área de figuras planas. Bolema, 34(68). https://doi.org/10.1590/1980-4415v34n68a09
Caviedes, S., De Gamboa, G. & Badillo, E. (2021). Mathematical objects that configure the partial area meanings mobilized in task-solving. International Journal of Mathematical Education in Science and Technology, 1-20. https://doi.org/10.1080/0020739X.2021.1991019
Chamberlin, M. & Candelaria, M. (2018). Learning from Teaching Teachers: A Lesson Experiment in Area and Volume with Prospective Teachers. Mathematics Teacher Education and Development, 20(1), 86-111. https://eric.ed.gov/?id=EJ1173370
Cohen, L., Manion, L. & Morrison, K. (2000). Research methods in education, 5th ed, Routledge falmer, London.
D'Amore, B. & Fandiño, M. (2007). Relaciones entre área y perímetro: convicciones de maestros y de estudiantes. Revista Latinoamericana de Investigación en Matemática Educativa, 10(1), 39-68.
Duval, R. (1995). Geometrical pictures: Kinds of representation and specific processings. In Exploiting mental imagery with computers in mathematics education (pp. 142-157). Berlin: Springer. https://doi.org/10.1007/978-3-642-57771-0_10
Duval, R. (1999). Semiosis y pensamiento humano: registros semióticos y aprendizajes intelectuales (M. Vega, Trad.). Cali, Colombia: Universidad del Valle.
Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational studies in mathematics, 61(1-2), 103-131. https://doi.org/10.1007/s10649-006-0400-z
Duval, R. (2017). Understanding the mathematical way of thinking – The registers of semiotic representations. Cham: Springer. https://doi.org/10.1007/978-3-319-56910-9
Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht: Reidel.
Godino, J. D., Batanero, C. & Font, V. (2019). The Onto-Semiotic Approach: Implications for the Prescriptive Character of Didactics. For the Learning of Mathematics, 39(1), 38-43. https://eric.ed.gov/?id=EJ1211459
Godino, J. D., Giacomone, B., Font, V. & Pino-Fan (2018). Conocimientos profesionales en el diseño y gestión de una clase sobre semejanza de triángulos: análisis con herramientas del modelo CCDM. Avances de investigación en Educación Matemática. (13), 63-83. https://doi.org/10.35763/aiem.v0i13.224
Hill, H. C., Schilling, S. & Ball, D. L. (2004). Developing measures of teachers’ mathematics knowledge for teaching. The elementary school journal, 105(1), 11-30. https://doi.org/10.1086/428763
Hong, D. & Runnalls, C. (2020). Examining preservice teachers' responses to area conservation tasks. School Science and Mathematics, 120(5), 262-272. https://doi.org/10.1111/ssm.12409
Kospentaris, G., Spyrou, P. & Lappas, D. (2011). Exploring students’ strategies in area conservation geometrical tasks. Educational Studies in Mathematics, 77(1), 105-127. https://doi.org/10.1007/s10649-011-9303-8
Krauss, S., y Blum, W. (2012). The conceptualisation and measurement of pedagogical content knowledge and content knowledge in the COACTIV study and their impact on student learning. Journal of Education, (56), 45-66. http://doi.org/10.5283/epub.34256
Krippendorff, K. (2004) Content Analysis: An Introduction to its Methodology. California: Sage.
Liñan, M., Barrera, V. & Infante, J. (2014). Conocimiento especializado de los estudiantes para maestro: la resolución de un problema con división de fracciones. Escuela Abierta, 17(1), 41-63. https://doi.org/10.29257/EA17.2014.04
Livy, S., Muir, T. & Maher, N. (2012). How do they measure up? Primary pre-service teachers' mathematical knowledge of area and perimeter. Mathematics Teacher Education and Development, 14(2), 91-112. https://files.eric.ed.gov/fulltext/EJ1018652.pdf
Llinares, S. (2012). Formación de profesores de matemáticas. Caracterización y desarrollo de competencias docentes. Cuadernos, 10, 53-62. http://funes.uniandes.edu.co/21400/1/Llinares2012Formacion.pdf
Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental mathematics in China and the United States. Mahwah, NJ: Lawrence Erlbaum Associates. https://doi.org/10.4324/9780203856345
Montes, M., Aguilar, A., Carrillo, J. & Muñoz-Catalán, M. (2015, febrero). MTSK: From Common and Horizon Knowledge to Knowledge of Topics and Structures. En B. Ubuz, C. Haser, y M. Mariotti (Eds.), Proceedings of the 8th Congress of the European Society for Research in Mathematics Education (pp. 3185-3194). Antalya: ERME. http://www.mathematik.tu-dortmund.de/~erme/doc/CERME8/CERME8_2013_Proceedings.pdf
Piaget, J., Inhelder, B. & Szeminska, A. (1981). The Child’s Conception of Geometry. New York: Norton and Company.
Policastro, M., Mellone, M., Ribeiro, M. & Fiorentini, D. (2019, febrero). Conceptualising tasks for teacher education: from a research methodology to teachers’ knowledge development. En Eleventh Congress of the European Society for Research in Mathematics Education. Utrecht: ERME. https://hal.archives-ouvertes.fr/hal-02430487
Puig, L. & Guillén, G. (1983). Necesidad y experimentación de un nuevo modelo para el estudio de la geometría en la EGB y Escuelas de Magisterio. Memoria de Investigación. https://redined.educacion.gob.es/xmlui/handle/11162/83753
Rowland, T., Huckstep, P. & Thwaites, A. (2005). Elementary teachers’ mathematics subject knowledge: The knowledge quartet and the case of Naomi. Journal of mathematics teacher education, 8(3), 255-281. https://doi.org/10.1007/s10857-005-0853-5
Runnalls, C. & Hong, D. (2020). “Well, they understand the concept of area”: Pre-service teachers’ responses to student area misconceptions. Mathematics Education Research Journal, 32(4), 629-651. https://doi.org/10.1007/s13394-019-00274-1
Sarama, J. & Clements, D. H. (2009). Early childhood mathematics education research: Learning trajectories for young children. New York: Routledge. https://doi.org/10.4324/9780203883785
Scheiner, T., Montes, M., Godino, J. D., Carrillo, J. & ino-Fan, L. R. (2019). What makes mathematics teacher knowledge specialized? Offering alternative views. International Journal of Science and Mathematics Education, 17(1), 153-172. https://doi.org/10.1007/s10763-017-9859-6
Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational researcher, 15(2), 4-14. https://doi.org/10.3102/0013189X015002004
Simon, M. & Blume, G. (1994). Building and understanding multiplicative relationships: A study of prospective elementary teachers. Journal for Research in Mathematics Education, 25(5), 472-494. https://doi.org/10.5951/jresematheduc.25.5.0472
Sisman, G. T. & Aksu, M. (2009). Seventh grade student’s success on the topics of area and perimeter. Elementary Education Online, 8(1), 243-253. https://doi.org/10.16986/huje.2018045388
Tierney, C., Boyd, C. & Davis, G. (1990). Prospective primary teachers’ conceptions of area. In Proceedings of the 14th Conference of the International Group for the Psychology of Mathematics Education, 2, 307-314. https://files.eric.ed.gov/fulltext/ED411138.pdf
Zacharos, K. (2006). Prevailing educational practices for area measurement and students’ failure in measuring areas. The Journal of Mathematical Behavior, 25(3), 224-239. https://doi.org/10.1016/j.jmathb.2006.09.003
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors guarantee the journal the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
2. Authors can set separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, place it in an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
3. The authors have declared to hold all permissions to use the resources they provided in the paper (images, tables, among others) and assume full responsibility for damages to third parties.
4. The opinions expressed in the paper are the exclusive responsibility of the authors and do not necessarily represent the opinion of the editors or the Universidad Nacional.
Uniciencia Journal and all its productions are under Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
There is neither fee for access nor Article Processing Charge (APC)