Spatial distribution of hydrogen sulfite and ammonia emissions from a wastewater treatment plant in Costa Rica, using the AERMOD air pollution dispersion model
DOI:
https://doi.org/10.15359/ru.37-1.9Keywords:
Spatial distribution, ammonia, hydrogen sulfite, emissions, AERMOD, air quality, dispersionAbstract
[Objective] The variation of hydrogen sulfide (H2S) and ammonia (NH3) concentrations in air was studied in a wastewater treatment system in Costa Rica to obtain information about the dispersion of odors produced using on-site measurements and an air dispersion model. [Methodology] Thirteen samples were taken in periods of 12 hours and 24 hours between October 2016 and February 2017, and the measurements taken in the field were entered into a dispersion model. Meteorological parameters including direction and wind speed, global radiation, temperature, percentage of relative humidity, precipitation, and atmospheric pressure were recorded. Dispersion of gases around the selected emission points in the treatment plant was determined using the Aermed View and AERMOD programs. Data on roughness parameters, Bowen ratio and albedo for a rural area were incorporated into the Aermet View and the data collected was incorporated into the AERMOD model. [Results] The concentrations of gases emitted by the plant were below the perception values of these substances, 0.70 µg/m3 (< 0.50 ppb) for H2S and 26.6 µg/m3 (< 35.5 ppb) for NH3. The discharge channel is the main source of emissions; the gases emitted were dispersed to the neighboring communities of La Carpio, María Auxiliadora and Rincón Grande to the Northwest; Carvajal Castro, Rossiter Carballo, Residencial Real Santamaría and Lagunilla to the Northeast, and the National Emergency Commission to the South. Error values ranged between 5% and 48% for H2S and between 8% and 75% for NH3. The concordance index (CI) showed agreement between the predicted and observed values for both H2S and NH3. [Conclusions] H2S and NH3 emissions from the wastewater treatment system do not represent a risk to health or the environment for nearby populations.
References
Barclay, J. y Borissova, M. (2013). Potential problems using AERMOD to implement current odour regulations for WWTPs. 5th IWA Conference on Odors and Air Emissions, San Francisco. https://www.academia.edu/9340107/Barclay_Borissova_Odor_Modelling
Behera, S. N., Sharma, M., Aneja, V. P. y Balasubramanian, R. (2013). Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environment Science Pollution Research, 20(11), 8092-8131. https://doi.org/10.1007/s11356-013-2051-9
Benavides, H. (2003). Pronóstico de la concentración de material particulado por chimeneas industriales en Bogotá. (Tesis de Maestría). Universidad Nacional de Colombia, Colombia.
Cabrera, F. (2008). Evaluación de un modelo de dispersión de contaminantes atmosféricos con la técnica espectroscópica DOAS Pasiva. (Tesis de Maestría). Universidad Nacional Autónoma de México, México.
Calvo, J. y Hernández, D. (2016). Mitigación de malos olores generados en plantas de tratamiento de aguas residuales: Estudio de caso El Roble de Puntarenas. (Informe final de proyecto). Instituto Tecnológico de Costa Rica, Costa Rica.
Carrera, F., Donoso-Bravo, A., Souto-González, J. A. y Ruiz-Filippi, G. (2014). Modeling the odor generation in WWTP: An integrated approach review. Water Air and Soil Pollution, 225(6), 1-15. https://doi.org/10.1007/s11270-014-1932-y
Elbir, T. (2003). Comparison of model predictions with the data of an urban air quality monitoring network in Izmir, Turkey. Atmospheric Environment, 37(15), 2149-2157. https://doi.org/10.1016/S1352-2310(03)00087-6
Fernández-Mora, E. (5 de enero de 2014). Proyecto para tratamiento de aguas de la GAM ya comprometió 29% de inversión. Periódico El Financiero, edición digital. https://www.elfinancierocr.com/economia-y-politica/proyecto-para-tratamiento-de-aguas-de-la-gam-ya-comprometio-29-de-inversion/AKIXE66PBVGV5J5RE5SHIFK36M/story/
Ferrer, A., Nguyen-Viet, H. y Zinsstag, J. (2012). Quantification of diarrhea risk related to wastewater contact in Thailand. Ecohealth, 9(1), 49-59. https://doi.org/10.1007/s10393-012-0746-x
Fonseca, A. (2008). La Zona Marino-Costera, Decimocuarto Informe Estado de la Nación en Desarrollo Humano Sostenible, Costa Rica.
Gostelow, P., Parsons, S. A. y Stuetz, R. M. (2001). Odour measurements for sewage treatment works. Water Research, 35(3), 579-597. https://doi.org/10.1016/S0043-1354(00)00313-4
Gramsch, E., Cáceres, D., Oyola, P., Reyes, F., Vásquez, Y., Rubio, M. A. y Sánchez, G. (2014). Influence of surface and subsidence thermal inversion on PM 2.5 and black carbon concentration. Atmospheric Environment, 98, 290-298. https://doi.org/10.1016/j.atmosenv.2014.08.066
Jiménez, B. y Galizia, J. (2012). Diagnóstico del agua en las América. Ediciones DR FCCyT, México.
Latos, M., Karageorgos, P., Kalogerakis, N. y Lazaridis, M. (2011). Dispersion of Odorous Gaseous Compounds Emitted from Wastewater Treatment Plants. Water, Air and Soil Pollution, 215(1), 667-677. https://doi.org/10.1007/s11270-010-0508-8
Leonardos, G., Kendall, D. y Barnard, N. (1969). Odor threshold determinations of 53 odorant. Chemicals Journal of Air Pollution Control Association, 19(2), 91-95. https://doi.org/10.1080/00022470.1969.10466465
Maasikmets, M., Teinemaa, E., Kaasik, A. y Kimmel, V. (2015). Measurement and analysis of ammonia, hydrogen sulphide and odour emissions from the cattle farming in Estonia. Biosystem Engineering, 139, 48-59. https://doi.org/10.1016/biosystemseng.2015.08.002
Moreno, J. y Moral, R. (2008). Compostaje, 1.a ed. Ediciones Mundi-Prensa, Madrid.
NAAQS. (2009). Guidelines for Sampling and Measurement of Notified Ambient Air Quality Parameters; Vol. I: Guidelines for Manual Sampling & Analysis, 4th ed. Delhi, India.
Pérez-Gómez, G., Gastezzi-Arias, P. y Vega-Quesada, P. (2016). Avifauna poco frecuente en la microcuenca del río Torres, San José, Costa Rica. Zeledonia, 20(2). https://www.zeledonia.com/uploads/7/0/1/0/70104897/zelnov2016-20-27.pdf
Ozturk, Z. Z., Tasaltin, C., Engin, G. O., Gürek, A. G., Atilla, D., Ahsen, V. e Ince, M. (2009). Evaluation of a fast wastewater odour characterization procedure using a chemical sensor array. Environmental Monitoring and Assessment, 151(1-4), 369-375. https://doi.org/10.1007/s10661-008-0278-6
Sáenz, L. (2015). Modelación de dispersión de olores y odorantes mediante el modelo de penacho gaussiano. Estudio de caso en la planta de tratamiento de El Roble de Puntarenas, Costa Rica. (Tesis de Licenciatura). Instituto Tecnológico de Costa Rica, Costa Rica.
Sáenz, L. E., Zambrano-Piamba, D. y Calvo, J. (2016). Percepción comunitaria de los olores generados por la planta de tratamiento de aguas residuales de El Roble-Puntarenas, Costa Rica. Tecnología en Marcha, 29(2), 137-149. https://doi.org/10.18845/tm.v29i2.2697
Sakai, S., Nakaya, M., Sampei, Y., Dettman, D. L. y Takayasu, K. (2013). Hydrogen sulfide and organic carbon at the sediment-water interface in coastal brackish Lake Nakaumi, SW Japan. Environmental Earth Science, 68(7), 1999-2006. https://doi.org/10.1007/s12665-012-1887-5
Sibaja, J. (2014). Aplicación del modelo Aermod para determinar los niveles de calidad del aire para contaminantes atmosféricos. (Tesis de Maestría). Universidad Nacional, Costa Rica.
Silva, J., Torres, P. y Madera, C. (2008). Reúso de aguas residuales domésticas en agricultura. Una revisión. Agronomía Colombiana, 26(2), 347-359. https://revistas.unal.edu.co/index.php/agrocol/article/view/13521
Stellacci, P., Liberti, L., Notarnicola, M. y Haas, C. (2010). Hygienic sustainability of site location of wastewater treatment plants: A case study. I. Estimating odour emission impact. Desalination, 253(1-3), 51-56. https://doi.org/10.1016/j.desal.2009.11.034
Talaiekhozani, A., Bagheri, M., Goli, A. y Khoozani, M. R. T. (2016). An overview of principles of odor production, emission, and control methods in wastewater collection and treatment systems. Journal of Environment Management, 170(1), 186-206. https://doi.org/10.1016/j.jenvman.2016.01.021
Teklehaimanot, G. Z., Coetzee, M. A. y Momba, M. N. (2014). Faecal pollution loads in the wastewater effluents and receiving water bodies: a potential threat to the health of Sedibeng and Soshanguve communities, South Africa. Environment Science and Pollution Research, 21(16), 9589-9603. https://doi.org/10.1007/s11356-014-2980-y
Valdés, J., Quesada, J., Morales, J., Alfaro, R., Esquivel, G. y Sibaja, J. (2010). Manual de Laboratorio de Química de la Atmósfera. Universidad Nacional, Costa Rica.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors guarantee the journal the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
2. Authors can set separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, place it in an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
3. The authors have declared to hold all permissions to use the resources they provided in the paper (images, tables, among others) and assume full responsibility for damages to third parties.
4. The opinions expressed in the paper are the exclusive responsibility of the authors and do not necessarily represent the opinion of the editors or the Universidad Nacional.
Uniciencia Journal and all its productions are under Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
There is neither fee for access nor Article Processing Charge (APC)