Insecticidal activity of ethanolic plant extracts on Aedes aegypti larvae
DOI:
https://doi.org/10.15359/ru.37-1.17Keywords:
Aedes aegypti, ethanolic extracts, secondary metabolites, Ipomoea cairica, larvicidal activityAbstract
[Objective] The objective of this study was to determine the larvicidal activity against A. aegypti of ethanolic extracts of plants commonly found in Costa Rica. [Methodology] Larvicidal activity of ethanolic extracts of plants was determined in this study using the WHO/VBC/81.807: WHO/VBC/81. from 1981. An analysis PROBID for dose response was conducted to determine LC50 of the most prominent extracts. [Results] A total of six extracts with the highest toxicity were chosen, with the stem extract of Ipomoea cairica having the lowest LC50 of 0.0341 mg/mL, followed by I. cairica leaf extract with an LC50 of 0.121 mg/mL. The larvicidal activity of ethanolic extracts of plants was determined in this study, with an emphasis on the larvicidal potential of I. cairica as an environmentally friendly alternative for the control of A. aegypti. [Conclusions] The larvicidal activity for ethanolic extracts of different plants, with an emphasis on the larvicidal potential of I. cairica as an environmentally friendly alternative for the control of A. aegypti.
References
Ahbirami, R., Zuharah, W. F., Thiagaletchumi, M., Subramaniam, S., & Sundarasekar, J. (2014). Larvicidal efficacy of different plant parts of railway creeper, ipomoea cairica extract against dengue vector mosquitoes, aedes albopictus (Diptera: Culicidae) and aedes aegypti (Diptera: Culicidae). Journal of Insect Science, 14(180). https://doi.org/10.1093/jisesa/ieu042
Amariles Barrera, S., García Pajón, C., & Parra Henao, G. (2013). Actividad insecticida de extractos vegetales sobre larvas de Aedes aegypti, Diptera: Culicidae. Revista CES Medicina, 27(2), 193–203. https://doi.org/10.21615/ces
Araya, M., Carvajal, Y., Álvarez, V., Orozco, R., & Rodríguez, G. (2017). Polyphenol characterization of three varieties of Blackberry fruits (Rubus adenotrichos), cultivated in Costa Rica. Journal of Berry Research, 7, 97–107. https://doi.org/10.3233/JBR-170150
Bisset, J. A., Marin, R., Rodriguez, M. M., Severson, D. W., Ricardo, Y., French, L., Perez, O. (2013). Insecticide resistance in two Aedes aegypti (Diptera: Culicidae) strains from Costa Rica. J Med Entomol, 50(2), 352–361. https://doi.org/10.1603/ME12064
Boehme, A. K., Noletto, J. A., Haber, W. A., & Setzer, W. N. (2008). Bioactivity and chemical composition of the leaf essential oils of Zanthoxylum rhoifolium and Zanthoxylum setulosum from Monteverde, Costa Rica. Natural Product Research, 22(1), 31–36. https://doi.org/10.1080/14786410601130224
Calderón, Ó., & Troyo, A. (2016). Evaluación de la resistencia a insecticidas en cepas de Aedes aegypti (Diptera: Culicidae) de la Región Caribe de Costa Rica. Revista Cubana de Medicina Tropical, 68(1), 95–104.
Calderón-Arguedas, Ó., & Troyo, A. (2014). Perfil de resistencia a insecticidas en una cepa de Aedes aegypti (Linnaeus) de la región Caribe de Costa Rica. Revista Cubana de Medicina Tropical, 66(3), 351–359.
Gonzalez, M. (15 de agosto de 2021). Informe de vigilancia de Arbovirus basada en laboratorio: Análisis de datos de virus Zika, dengue, chikungunya, mayaro y fiebre amarilla. https://www.inciensa.sa.cr/vigilancia_epidemiologica/informes_vigilancia/2021/Virologia/Informe%20Arbovirus%201er%20semestre%202021.pdf
Greenop, A., Cook, S. M., Wilby, A., Pywell, R. F., & Woodcock, B. A. (2020). Invertebrate community structure predicts natural pest control resilience to insecticide exposure. Journal of Applied Ecology, 1365-2664.13752. https://doi.org/10.1111/1365-2664.13752
Gutierrez, O., Arenas, J., Barrera, M., & Martínez, J. (2007). Actividad insecticida de extractos de Bocconia frutescens l. sobre Hypothenemus hampei f. Scientia et Technica, 1(33).
Hasan, H. A., Jaal, Z., Ranson, H., & McCall, P. (2015). Pyrethroid and organophosphate susceptibility status of Aedes aegypti (Linnaeus) and Aedes Albopictus (Skuse) in Penag, Malaysia. International Journal of Entomological Research, 03(03), 91–95.
Haziqah-Rashid, A., Chen, C. D., Lau, K. W., Low, V. L., Sofian-Azirun, M., Suana, I. W., … Azidah, A. A. (2019). Monitoring Insecticide Resistance Profiles of Aedes aegypti (Diptera: Culicidae) in the Sunda Islands of Indonesia Based on Diagnostic Doses of Larvicides. Journal of Medical Entomology, 56(2), 514–518. https://doi.org/10.1093/jme/tjy208
Jirovetz, L., Buchbauer, G., Stoilova, I., Krastanov, A., Stoyanova, A., & Schmidt, E. (2007). Spice plants: Chemical composition and antioxidant properties of Pimenta Lindl. essential oils, part 1: Pimenta doica (L.) Merr. leaf oil from Jamaica. Ernährung, 31(7/8), 293.
Keziah, E. A., Nukenine, E. N., Yingyang Danga, S. P., & Esimon, C. O. (2016). Synergistic Activity of a Mixture of Lantana camara and Ocimum gratissimum Leaves Extracts against Aedes aegypti Larvae (Diptera: Culicidae). Journal of Mosquito Research, 6(23), 1–10. https://doi.org/10.5376/jmr.2016.06.0023
Leal, A., de Oliveira, A., Santos, R., Soares, J., Lavor, E., Pontes, M., … Almeida, J. (2020). Determination of phenolic compounds, in vitro antioxidant activity and characterization of secondary metabolites in different parts of Passiflora cincinnata by HPLC-DAD-MS/MS analysis. Natural Product Research, 34(7), 995–1001. https://doi.org/10.1080/14786419.2018.1548445
Leyva, M., Tacoronte, J., Marquetti, M., Scull, R., Montada, D., Rodríguez, Y., & Bruzón, R. (2008). Actividad insecticida de aceites esenciales de plantas en larvas de Aedes aegypti (Diptera: Culicidae). Revista Cubana de Medicina Tropical, 60(1), 78–82.
Leyva-Silva, M. I., French, L., Pino, O., Montada, D., Morejón, G., & Marquetti, M. del C. (2017). Plantas con actividad insecticida: Una alternativa natural contra mosquitos. Revista Biomédica, 28(3), 139–181. https://doi.org/10.32776/revbiomed.v28i3.571
Liu, M., Cai, Q. X., Liu, H. Z., Zhang, B. H., Yan, J. P., & Yuan, Z. M. (2002). Chitinolytic activities in Bacillus thuringiensis and their synergistic effects on larvicidal activity. Journal of Applied Microbiology, 93(3), 374–379. https://doi.org/10.1046/j.1365-2672.2002.01693.x
Lounibos, L. P., & Kramer, L. D. (2016). Invasiveness of Aedes aegypti and Aedes albopictus and vectorial capacity for chikungunya virus. Journal of Infectious Diseases, 214(Suppl 5), S453–S458. https://doi.org/10.1093/infdis/jiw285
Manjarres-Suarez, A., & Olivero-Verbel, J. (2013). Chemical control of Aedes aegypti: a historical perspective. Revista Costarricense de Salud Pública, 22(1), 68–75.
Mora, S., Castro, V., Chavarría, M., Murillo, R., & Poveda, L. (2011). Chemical constituents from Zanthoxylum setulosum (Rutaceae). Boletin Latinoamericano y Del Caribe de Plantas Medicinales y Aromaticas, 10(2), 155–158.
Muñoz V. J. A., Staschenko, E., & Ocampo D., C. B. (2014). Actividad insecticida de aceites esenciales de plantas nativas contra Aedes aegypti (Diptera: Culicidae). Revista Colombiana de Entomologia, 40(2), 198–202.
Olga, O. O., & Braz-Filho, R. (1997). Dibenzylbutyrolactone lignans and coumarins from Ipomoea cairica. Journal of the Brazilian Chemical Society, 8(3), 235–238. https://doi.org/10.1590/s0103-50531997000300009
Pan American Health Organization. (2019). Dengue. https://www.paho.org/es/temas/dengue
Pan American Health Organization. (2020). Dengue National Fever cases https://www.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.html
Paniz-Mondolfi, A. E., Rodríguez-Morales, A. J., Blohm, G., Marquez, M., & Villamil-Gomez, W. E. (2016). ChikDenMaZika Syndrome: The challenge of diagnosing arboviral infections in the midst of concurrent epidemics. Annals of Clinical Microbiology and Antimicrobials, 15(1), 1–4. https://doi.org/10.1186/s12941-016-0157-x
Parra, J., Hernández, P., Ocampo-Maroto, F., Álvarez-Valverde, V., Carvajal-Miranda, Y., Rodríguez-Rodríguez, G., & Herrera, C. (2018). Phytochemical characterization and antioxidant profile of Sechium edule (Jacq) Swartz (Cucurbitaceae) varieties grown in Costa Rica. Journal of Pharmacy and Pharmacognosy Research, 6(6), 448–457.
Patel, K., & Patel, D. K. (2018). Health Benefits of Quassin from Quassia amara: A Comprehensive Review of their Ethnopharmacological Importance, Pharmacology, Phytochemistry and Analytical Aspects. Current Nutrition & Food Science, 16(1), 35–44. https://doi.org/10.2174/1573401314666181023094645
Patterson, J., Sammon, M., & Garg, M. (2016). Dengue, zika and chikungunya: Emerging arboviruses in the new world. Western Journal of Emergency Medicine, 17(6), 671–679. https://doi.org/10.5811/westjem.2016.9.30904
Pilon, A. C., del Grande, M., Silvério, M. R. S., Silva, R. R., Albernaz, L. C., Vieira, P. C., … Lopes, N. P. (2022). Combination of GC-MS Molecular Networking and Larvicidal Effect against Aedes aegypti for the Discovery of Bioactive Substances in Commercial Essential Oils. Molecules, 27(5). https://doi.org/10.3390/molecules27051588
Pinto, C. C. C., Menezes, J. E. S. A. De, Melo, D. S., & Feitosa, C. R. S. (2016). Chemical Composition and larvicidal activity against Aedes aegypti of essential oils from Croton jacobinenesis Baill. Boletín Latinoamericano y Del Caribe de Plantas Medicinales y Aromáticas, 15(2), 122–127.
Prabha, I., & Nagarajan, N. (2016). Synthesis, anti-larvicidal and anti-bacterial studies of 7-hydroxy-4methylcoumarin, 7-acetoxy-4-methylcoumarin, 8-acetyl-7-hydroxy-4methylcoumarin, resacetophenone, 8-acetyl-5-hydroxy-4-methylcoumarin and 4, 7-dimethylcoumarin. Research Journal of Pharmacy and Technology, 9(4), 423–429. https://doi.org/10.5958/0974-360X.2016.00078.0
Rangiah, K., & Gowda, M. (2019). Method to Quantify Plant Secondary Metabolites: Quantification of Neem Metabolites from Leaf, Bark, and Seed Extracts as an Example (pp. 21–30). Springer, Cham. https://doi.org/10.1007/978-3-030-16122-4_3
Rey, J., & Lounibos, P. (2015). Ecología de Aedes aegypti y Aedes albopictus en América y la transmisión de enfermedades. Biomédica, 35(2), 1–27. https://doi.org/10.7705/biomedica.v35i2.2514
Setzer, W. N., Stokes, S. L., Bansal, A., Haber, W. A., Caffrey, C. R., Hanseir, E., & McKerrow, J. H. (2007). Chemical composition and cruzain inhibitory activity of croton draco bark essential oil from Monteverde, Costa Rica. Natural Product Communications, 2(6), 685–689. https://doi.org/10.1177/1934578x0700200613
Silvério, M. R. S., Espindola, L. S., Lopes, N. P., & Vieira, P. C. (2020, August 1). Plant natural products for the control of Aedes aegypti: The main vector of important arboviruses. Molecules. MDPI AG. https://doi.org/10.3390/molecules25153484
Vargas Miranda, K., Troyo, A., & Calderón Arguedas, Ó. (2019). Resistance of Aedes aegypti Diptera: Culicidae to organophosphate and pyrethroid insecticides in Orotina, Alajuela, Costa Rica. Revista Costarricense de Salud Pública, 28(1), 15–24.
Wang, Z., Kim, J.-R. R., Wang, M., Shu, S., & Ahn, Y.-J. J. (2012). Larvicidal activity of Cnidium monnieri fruit coumarins and structurally related compounds against insecticide-susceptible and insecticide-resistant Culex pipiens pallens and Aedes aegypti. Pest Management Science, 68(7), 1041–1047. https://doi.org/10.1002/ps.3265
World Health Organization. (1981). Instruction for determining the susceptibility or resistance of adult mosquitoes to organochlorine, organophosphate and carbamate insecticides-diagnostic test. WHO/VBC/81.807: WHO/VBC/81.80. https://apps.who.int/iris/handle/10665/69615
World Health Organization. (2004). Global strategic framework for integrated vector management. WHO/CDS/CPE/PVC/2004. https://apps.who.int/iris/handle/10665/68624
World Health Organization. (2009). Dengue. Guías para el diagnóstico, tratamiento, prevención y control. OMS y Programa Especial Para Investigación y Capacitación de Enfermedades Tropicales. https://iris.paho.org/handle/10665.2/31071
World Health Organization. (2017). Respuesta mundial para el control de vectores 2017-2030. https://paho.org/es/documentos/respuesta-mundial-para-control-vectores-2017-2030-0
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors guarantee the journal the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
2. Authors can set separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, place it in an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
3. The authors have declared to hold all permissions to use the resources they provided in the paper (images, tables, among others) and assume full responsibility for damages to third parties.
4. The opinions expressed in the paper are the exclusive responsibility of the authors and do not necessarily represent the opinion of the editors or the Universidad Nacional.
Uniciencia Journal and all its productions are under Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
There is neither fee for access nor Article Processing Charge (APC)