Insecticidal activity of ethanolic plant extracts on Aedes aegypti larvae

Authors

DOI:

https://doi.org/10.15359/ru.37-1.17

Keywords:

Aedes aegypti, ethanolic extracts, secondary metabolites, Ipomoea cairica, larvicidal activity

Abstract

[Objective] The objective of this study was to determine the larvicidal activity against A. aegypti of ethanolic extracts of plants commonly found in Costa Rica. [Methodology] Larvicidal activity of ethanolic extracts of plants was determined in this study using the WHO/VBC/81.807: WHO/VBC/81. from 1981. An analysis PROBID for dose response was conducted to determine LC50 of the most prominent extracts. [Results] A total of six extracts with the highest toxicity were chosen, with the stem extract of Ipomoea cairica having the lowest LC50 of 0.0341 mg/mL, followed by I. cairica leaf extract with an LC50 of 0.121 mg/mL. The larvicidal activity of ethanolic extracts of plants was determined in this study, with an emphasis on the larvicidal potential of I. cairica as an environmentally friendly alternative for the control of A. aegypti. [Conclusions] The larvicidal activity for ethanolic extracts of different plants, with an emphasis on the larvicidal potential of I. cairica as an environmentally friendly alternative for the control of A. aegypti.

References

Ahbirami, R., Zuharah, W. F., Thiagaletchumi, M., Subramaniam, S., & Sundarasekar, J. (2014). Larvicidal efficacy of different plant parts of railway creeper, ipomoea cairica extract against dengue vector mosquitoes, aedes albopictus (Diptera: Culicidae) and aedes aegypti (Diptera: Culicidae). Journal of Insect Science, 14(180). https://doi.org/10.1093/jisesa/ieu042

Amariles Barrera, S., García Pajón, C., & Parra Henao, G. (2013). Actividad insecticida de extractos vegetales sobre larvas de Aedes aegypti, Diptera: Culicidae. Revista CES Medicina, 27(2), 193–203. https://doi.org/10.21615/ces

Araya, M., Carvajal, Y., Álvarez, V., Orozco, R., & Rodríguez, G. (2017). Polyphenol characterization of three varieties of Blackberry fruits (Rubus adenotrichos), cultivated in Costa Rica. Journal of Berry Research, 7, 97–107. https://doi.org/10.3233/JBR-170150

Bisset, J. A., Marin, R., Rodriguez, M. M., Severson, D. W., Ricardo, Y., French, L., Perez, O. (2013). Insecticide resistance in two Aedes aegypti (Diptera: Culicidae) strains from Costa Rica. J Med Entomol, 50(2), 352–361. https://doi.org/10.1603/ME12064

Boehme, A. K., Noletto, J. A., Haber, W. A., & Setzer, W. N. (2008). Bioactivity and chemical composition of the leaf essential oils of Zanthoxylum rhoifolium and Zanthoxylum setulosum from Monteverde, Costa Rica. Natural Product Research, 22(1), 31–36. https://doi.org/10.1080/14786410601130224

Calderón, Ó., & Troyo, A. (2016). Evaluación de la resistencia a insecticidas en cepas de Aedes aegypti (Diptera: Culicidae) de la Región Caribe de Costa Rica. Revista Cubana de Medicina Tropical, 68(1), 95–104.

Calderón-Arguedas, Ó., & Troyo, A. (2014). Perfil de resistencia a insecticidas en una cepa de Aedes aegypti (Linnaeus) de la región Caribe de Costa Rica. Revista Cubana de Medicina Tropical, 66(3), 351–359.

Gonzalez, M. (15 de agosto de 2021). Informe de vigilancia de Arbovirus basada en laboratorio: Análisis de datos de virus Zika, dengue, chikungunya, mayaro y fiebre amarilla. https://www.inciensa.sa.cr/vigilancia_epidemiologica/informes_vigilancia/2021/Virologia/Informe%20Arbovirus%201er%20semestre%202021.pdf

Greenop, A., Cook, S. M., Wilby, A., Pywell, R. F., & Woodcock, B. A. (2020). Invertebrate community structure predicts natural pest control resilience to insecticide exposure. Journal of Applied Ecology, 1365-2664.13752. https://doi.org/10.1111/1365-2664.13752

Gutierrez, O., Arenas, J., Barrera, M., & Martínez, J. (2007). Actividad insecticida de extractos de Bocconia frutescens l. sobre Hypothenemus hampei f. Scientia et Technica, 1(33).

Hasan, H. A., Jaal, Z., Ranson, H., & McCall, P. (2015). Pyrethroid and organophosphate susceptibility status of Aedes aegypti (Linnaeus) and Aedes Albopictus (Skuse) in Penag, Malaysia. International Journal of Entomological Research, 03(03), 91–95.

Haziqah-Rashid, A., Chen, C. D., Lau, K. W., Low, V. L., Sofian-Azirun, M., Suana, I. W., … Azidah, A. A. (2019). Monitoring Insecticide Resistance Profiles of Aedes aegypti (Diptera: Culicidae) in the Sunda Islands of Indonesia Based on Diagnostic Doses of Larvicides. Journal of Medical Entomology, 56(2), 514–518. https://doi.org/10.1093/jme/tjy208

Jirovetz, L., Buchbauer, G., Stoilova, I., Krastanov, A., Stoyanova, A., & Schmidt, E. (2007). Spice plants: Chemical composition and antioxidant properties of Pimenta Lindl. essential oils, part 1: Pimenta doica (L.) Merr. leaf oil from Jamaica. Ernährung, 31(7/8), 293.

Keziah, E. A., Nukenine, E. N., Yingyang Danga, S. P., & Esimon, C. O. (2016). Synergistic Activity of a Mixture of Lantana camara and Ocimum gratissimum Leaves Extracts against Aedes aegypti Larvae (Diptera: Culicidae). Journal of Mosquito Research, 6(23), 1–10. https://doi.org/10.5376/jmr.2016.06.0023

Leal, A., de Oliveira, A., Santos, R., Soares, J., Lavor, E., Pontes, M., … Almeida, J. (2020). Determination of phenolic compounds, in vitro antioxidant activity and characterization of secondary metabolites in different parts of Passiflora cincinnata by HPLC-DAD-MS/MS analysis. Natural Product Research, 34(7), 995–1001. https://doi.org/10.1080/14786419.2018.1548445

Leyva, M., Tacoronte, J., Marquetti, M., Scull, R., Montada, D., Rodríguez, Y., & Bruzón, R. (2008). Actividad insecticida de aceites esenciales de plantas en larvas de Aedes aegypti (Diptera: Culicidae). Revista Cubana de Medicina Tropical, 60(1), 78–82.

Leyva-Silva, M. I., French, L., Pino, O., Montada, D., Morejón, G., & Marquetti, M. del C. (2017). Plantas con actividad insecticida: Una alternativa natural contra mosquitos. Revista Biomédica, 28(3), 139–181. https://doi.org/10.32776/revbiomed.v28i3.571

Liu, M., Cai, Q. X., Liu, H. Z., Zhang, B. H., Yan, J. P., & Yuan, Z. M. (2002). Chitinolytic activities in Bacillus thuringiensis and their synergistic effects on larvicidal activity. Journal of Applied Microbiology, 93(3), 374–379. https://doi.org/10.1046/j.1365-2672.2002.01693.x

Lounibos, L. P., & Kramer, L. D. (2016). Invasiveness of Aedes aegypti and Aedes albopictus and vectorial capacity for chikungunya virus. Journal of Infectious Diseases, 214(Suppl 5), S453–S458. https://doi.org/10.1093/infdis/jiw285

Manjarres-Suarez, A., & Olivero-Verbel, J. (2013). Chemical control of Aedes aegypti: a historical perspective. Revista Costarricense de Salud Pública, 22(1), 68–75.

Mora, S., Castro, V., Chavarría, M., Murillo, R., & Poveda, L. (2011). Chemical constituents from Zanthoxylum setulosum (Rutaceae). Boletin Latinoamericano y Del Caribe de Plantas Medicinales y Aromaticas, 10(2), 155–158.

Muñoz V. J. A., Staschenko, E., & Ocampo D., C. B. (2014). Actividad insecticida de aceites esenciales de plantas nativas contra Aedes aegypti (Diptera: Culicidae). Revista Colombiana de Entomologia, 40(2), 198–202.

Olga, O. O., & Braz-Filho, R. (1997). Dibenzylbutyrolactone lignans and coumarins from Ipomoea cairica. Journal of the Brazilian Chemical Society, 8(3), 235–238. https://doi.org/10.1590/s0103-50531997000300009

Pan American Health Organization. (2019). Dengue. https://www.paho.org/es/temas/dengue

Pan American Health Organization. (2020). Dengue National Fever cases https://www.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.html

Paniz-Mondolfi, A. E., Rodríguez-Morales, A. J., Blohm, G., Marquez, M., & Villamil-Gomez, W. E. (2016). ChikDenMaZika Syndrome: The challenge of diagnosing arboviral infections in the midst of concurrent epidemics. Annals of Clinical Microbiology and Antimicrobials, 15(1), 1–4. https://doi.org/10.1186/s12941-016-0157-x

Parra, J., Hernández, P., Ocampo-Maroto, F., Álvarez-Valverde, V., Carvajal-Miranda, Y., Rodríguez-Rodríguez, G., & Herrera, C. (2018). Phytochemical characterization and antioxidant profile of Sechium edule (Jacq) Swartz (Cucurbitaceae) varieties grown in Costa Rica. Journal of Pharmacy and Pharmacognosy Research, 6(6), 448–457.

Patel, K., & Patel, D. K. (2018). Health Benefits of Quassin from Quassia amara: A Comprehensive Review of their Ethnopharmacological Importance, Pharmacology, Phytochemistry and Analytical Aspects. Current Nutrition & Food Science, 16(1), 35–44. https://doi.org/10.2174/1573401314666181023094645

Patterson, J., Sammon, M., & Garg, M. (2016). Dengue, zika and chikungunya: Emerging arboviruses in the new world. Western Journal of Emergency Medicine, 17(6), 671–679. https://doi.org/10.5811/westjem.2016.9.30904

Pilon, A. C., del Grande, M., Silvério, M. R. S., Silva, R. R., Albernaz, L. C., Vieira, P. C., … Lopes, N. P. (2022). Combination of GC-MS Molecular Networking and Larvicidal Effect against Aedes aegypti for the Discovery of Bioactive Substances in Commercial Essential Oils. Molecules, 27(5). https://doi.org/10.3390/molecules27051588

Pinto, C. C. C., Menezes, J. E. S. A. De, Melo, D. S., & Feitosa, C. R. S. (2016). Chemical Composition and larvicidal activity against Aedes aegypti of essential oils from Croton jacobinenesis Baill. Boletín Latinoamericano y Del Caribe de Plantas Medicinales y Aromáticas, 15(2), 122–127.

Prabha, I., & Nagarajan, N. (2016). Synthesis, anti-larvicidal and anti-bacterial studies of 7-hydroxy-4methylcoumarin, 7-acetoxy-4-methylcoumarin, 8-acetyl-7-hydroxy-4methylcoumarin, resacetophenone, 8-acetyl-5-hydroxy-4-methylcoumarin and 4, 7-dimethylcoumarin. Research Journal of Pharmacy and Technology, 9(4), 423–429. https://doi.org/10.5958/0974-360X.2016.00078.0

Rangiah, K., & Gowda, M. (2019). Method to Quantify Plant Secondary Metabolites: Quantification of Neem Metabolites from Leaf, Bark, and Seed Extracts as an Example (pp. 21–30). Springer, Cham. https://doi.org/10.1007/978-3-030-16122-4_3

Rey, J., & Lounibos, P. (2015). Ecología de Aedes aegypti y Aedes albopictus en América y la transmisión de enfermedades. Biomédica, 35(2), 1–27. https://doi.org/10.7705/biomedica.v35i2.2514

Setzer, W. N., Stokes, S. L., Bansal, A., Haber, W. A., Caffrey, C. R., Hanseir, E., & McKerrow, J. H. (2007). Chemical composition and cruzain inhibitory activity of croton draco bark essential oil from Monteverde, Costa Rica. Natural Product Communications, 2(6), 685–689. https://doi.org/10.1177/1934578x0700200613

Silvério, M. R. S., Espindola, L. S., Lopes, N. P., & Vieira, P. C. (2020, August 1). Plant natural products for the control of Aedes aegypti: The main vector of important arboviruses. Molecules. MDPI AG. https://doi.org/10.3390/molecules25153484

Vargas Miranda, K., Troyo, A., & Calderón Arguedas, Ó. (2019). Resistance of Aedes aegypti Diptera: Culicidae to organophosphate and pyrethroid insecticides in Orotina, Alajuela, Costa Rica. Revista Costarricense de Salud Pública, 28(1), 15–24.

Wang, Z., Kim, J.-R. R., Wang, M., Shu, S., & Ahn, Y.-J. J. (2012). Larvicidal activity of Cnidium monnieri fruit coumarins and structurally related compounds against insecticide-susceptible and insecticide-resistant Culex pipiens pallens and Aedes aegypti. Pest Management Science, 68(7), 1041–1047. https://doi.org/10.1002/ps.3265

World Health Organization. (1981). Instruction for determining the susceptibility or resistance of adult mosquitoes to organochlorine, organophosphate and carbamate insecticides-diagnostic test. WHO/VBC/81.807: WHO/VBC/81.80. https://apps.who.int/iris/handle/10665/69615

World Health Organization. (2004). Global strategic framework for integrated vector management. WHO/CDS/CPE/PVC/2004. https://apps.who.int/iris/handle/10665/68624

World Health Organization. (2009). Dengue. Guías para el diagnóstico, tratamiento, prevención y control. OMS y Programa Especial Para Investigación y Capacitación de Enfermedades Tropicales. https://iris.paho.org/handle/10665.2/31071

World Health Organization. (2017). Respuesta mundial para el control de vectores 2017-2030. https://paho.org/es/documentos/respuesta-mundial-para-control-vectores-2017-2030-0

Published

2023-06-01

Issue

Section

Original scientific papers (evaluated by academic peers)

Comentarios (ver términos de uso)

Most read articles by the same author(s)