Antimicrobial resistance in the main aquaculture resources of the departments of Tumbes, Piura, San Martin and Puno

Authors

DOI:

https://doi.org/10.15359/ru.37-1.30

Keywords:

Antibiotics, antimicrobial resistance, antimicrobial resistance genes, aquaculture, multi-drug resistance

Abstract

[Objective] The objective of this study was to analyze antimicrobial resistance in Peruvian aquaculture. [Methodology] An observational, descriptive study was carried out. Samples of Argopecten purpuratus, Oncorhynchus mykiss, Oreochromis niloticus and Litopenaeus vannamei were included. The bacteria Enterococcus spp., Salmonella spp., Escherichia coli, Vibrio parahaemolyticus, Aeromonas spp., and Flavobacterium psychrophilum were isolated. Antibiotic resistance was evaluated using antibiograms, and resistant samples were sequenced to identify antimicrobial resistance genes. Absolute and percentage frequencies were calculated. In addition, Wald, Clopper-Pearson, and pooled prevalence confidence intervals were estimated. [Results] In the case of A. purpuratus, 22.2% (95% CI:2.81-60.00) of the E. coli samples were resistant to oxytetracycline. Resistant samples were found in 4.44% (n=2) of the aquaculture production centers (APCs). In O. mykiss, 88.89% (95% CI:51.16-99.72) of the Enterococcus spp. were resistant to fosfomycin and oxytetracycline. Resistant samples were found in12.96% of the APCs (n=7). Regarding O. niloticus, 47.31% (95% CI: 37.16-57.46) of the E. coli samples were resistant to oxytetracycline>ampicilline>chloramphenicol>fosfomycin and azithromycin. Resistant samples were encountered in 50% of the APCs (n=19). In addition, 89.36% (95% CI:80.55-98.18) of the Enterococcus spp. were resistant to Fosfomycin> chloranphenicol and colistin> oxytetracycline>azithromycin>ampicilline; resistant samples were found in 36.84% of the APCs (n=14). In L. vannamei, 87.11% (95% CI:83.00-91.21) of the Enterococcus spp. samples were resistant to Fosfomycin> colistin> oxytetracycline> azithromycin>ampicilline and resistant samples were found in 100% of the APCs (n=33). Likewise, 35.05% (95% CI:29.74-40.23) of the V. parahaemolyticus samples were resistant to ampicilline>fosfomycin>oxytetracycline>azithromycin>eritromicine>enrofloxacin> ampicilline> chloranfhenicol. Resistant samples were found in 78.79% (n=26) of the APCs. [Conclusions] The percentage of APCs with O. niloticus and L. vannamei showed that antimicrobial resistance was high.

References

Alejos Tapia, I. G. (2017). Caracterización de la susceptibilidad a antibióticos betalactámicos de espectro extendido, ciprofloxacina y cotrimoxazol de cepas de Escherichia coli aisladas de zonas de amortiguamiento cercanas a crianza de Argopecten purpuratus (conchas de abanico) en seis puntos de la Bahía de Sechura, Piura (Universidad Peruana Cayetano Heredia). Universidad Peruana Cayetano Heredia. Retrieved from https://repositorio.upch.edu.pe/handle/20.500.12866/1351

Castillo Miranda, A. Y. (2017). Caracterización fenotípica, bioquímica y genética de flavobacterium psychrophilum. Obtenidas de casos de síndrome del alevín de la trucha arcoíris (rtfs). Retrieved from http://ri.uaemex.mx/handle/20.500.11799/71044

FAO. (2022). Pesca y acuicultura - Descripción general del sector acuícola nacional. Retrieved September 20, 2022, from https://www.fao.org/fishery/es/countrysector/pe/es

Fernández, C., Gijón, D., Álvarez, M., Santos, M. (2016). First Isolation of aeromonas salmonicida subespecies salmonicida fron deseased sea bass, dicentrarchus labrax (L.), cultured in Spain.

Ferri, M., Ranucci, E., Romagnoli, P., & Giaccone, V. (2017). Antimicrobial resistance: A global emerging threat to public health systems. Critical Reviews in Food Science and Nutrition, 57(13), 2857-2876. https://doi.org/10.1080/10408398.2015.1077192

Food and Agriculture Organizations of the United Nations. (n.d.). Antimicrobial Resistance. Retrieved July 11, 2022, from https://www.fao.org/antimicrobial-resistance/background/what-is-it/en/?from=groupmessage&isappinstalled=0

Furushita, M., Shiba, T., Maeda, T., Yahata, M., Kaneoka, A., Takahashi, Y., Torii, K., Hasegawa, T., Ohta, M. (2003). Similarity of Tetracycline Resistance Genes Isolated from Fish Farm Bacteria to Those from Clinical Isolates. Applied and Environmental Microbiology, 69(9), 5336. https://doi.org/10.1128/AEM.69.9.5336-5342.2003

Grande, F. J. 2020. Caracterización molecular de la resistencia antimicrobiana de Vibrio spp. Aislado de langostinos blancos (Litopenaeus vannamei) cultivados en Tumbes. Universidad Peruana Cayetano Heredia. Tesis. Perú.

Hollis, A., & Ahmed, Z. (2014). The path of least resistance: paying for antibiotics in non-human uses. Health Policy (Amsterdam, Netherlands), 118(2), 264-270. https://doi.org/10.1016/J.HEALTHPOL.2014.08.013

Hurtado Torres, C. L. (2019). Caracterización fenotípica y molecular de la resistencia antimicrobiana de Aeromonas salmonicida aisladas de truchas arcoíris (Oncorhynchus mykiss) provenientes de cuatro regiones de la sierra del Perú (Universidad Peruana Cayetano Heredia). Universidad Peruana Cayetano Heredia. Retrieved from https://repositorio.upch.edu.pe/handle/20.500.12866/7237

International Organization for Standardization. (2000). ISO 7899-2:2000. Water quality — Detection and enumeration of intestinal enterococci— Part 2: Membrane filtration method. Retrieved from https://www.iso.org/standard/14854.html

International Organization for Standardization. (2015). ISO 16649-3:2015 - Microbiology of the food chain — Horizontal method for the enumeration of beta-glucuronidase-positive Escherichia coli — Part 3: Detection and most probable number technique using 5-bromo-4-chloro-3-indolyl-ß-D-glucuronide. Retrieved from https://www.iso.org/standard/56824.html

International Organization for Standardization. (2017a). ISO 6579-1:2017 - Microbiology of the food chain — Horizontal method for the detection, enumeration and serotyping of Salmonella — Part 1: Detection of Salmonella spp. Retrieved from https://www.iso.org/standard/56712.html

International Organization for Standardization. (2017b). ISO 21872-1:2017 - Microbiology of the food chain — Horizontal method for the determination of Vibrio spp. — Part 1: Detection of potentially enteropathogenic Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus. Retrieved from https://www.iso.org/standard/74112.html

Instituto Nacional de Salud, (2022). Manual de Procedimientos para la prueba de sensibilidad antimicrobiana por el método de disco difusión. Serue de Normas Técnicas N.° 30. Perú.

McEwen, S. A., & Collignon, P. J. (2018). Antimicrobial Resistance: a One Health Perspective. Microbiology Spectrum, 6(2). https://doi.org/10.1128/MICROBIOLSPEC.ARBA-0009-2017

Ministerio de la Producción. (2022). Produce: La acuicultura nacional se recuperó en el 2021. Retrieved September 20, 2022, from https://www.gob.pe/institucion/produce/noticias/593860-produce-la-acuicultura-nacional-se-recupero-en-el-2021

Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han., C., Bisignano, C., Rao, P., Wool, E., Johnson, S., Browne, A., Give, M., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef, B., Kumaran, E., McManigal, B., Agarwal, R., Akech, S., Albertson, S., Amuasi, J., Andrews, J., Aravkin, A., Ashley, E., Bailey, F., Baker, S., Basnyat, B., Bekker, A., Bender, R., Bethou, A., Bielicki, J., Boonkasidecha, S., Bukosia, J., Carvalheiro, C., Castañeda-Orjuela, C., Chansamouth, V., Chaurasia, S., Chiurchiú, S., Chowdhury, F., Cook, A., Cooper, B., Cressey, T., Criollo-Mora, E., Cunningham, M., Darboe, S., Day, N., De Luca, M., Dokova, K., Dramowski A., Dunachie, S., Eckmanns, T., Eibach, D., Emami, A., Feasey, N., Fisher-Pearson, N., Forrest, K., Garrett, D., Gastmeier, P., Giref, A., Greer, R., Gupta, V., Haller, S., Haselbeck, A., Hay, S., Holm, M., Hopkins, S., Iregbu, K., Jacobs, J., Jarovsky, D., Javanmardi, F., Khorana, M., Kissoon, N., Kobeissi, E., Kostyanev, T., Krapp, F., Krumkamp, R., Kumar, A., Kyu, H., Lim, C., Limmathurotsakul, D., Loftus, M., Lunn, M., Ma, J., Mturi, N., Munera-Huertas, T., Musicha, P., Mussi-Pinhata, M., Nakamura, T., Nanavati, R., Nangia, S., Newton, P., Ngoun, C., Novotney, A., Nwakanma, D., Obiero, C., Olivas-Martines, A., Olliaro, P., ooko, E., Ortiz-Vrizuela, E., Peleg, A., Perrone, C., Plakkal, N., Ponce-de-Leon, A., Raad, M., Ramdin, T., Riddell, A., Roberts, T., Robotham, J., Roca, A., Rudd, K., Russell, N., Schnall, J., Scott, J., Shivamallappa, M., Sifuentes-Osornio, J., Steenkeste, N., Stewardson, A., Stoeva, T., Tasak, N., Thaiprakong, A., Thwaites, G., Turner, C., Turner, P., Van Doorn, H., Velaphi, S., Vongpradith, A., Vu, H., Walsh, T., Waner, S., Wangrangsimakul, T., Wozniak, T., Zheng, P., Sartorius, B., Lopez, A., Stergachis, A., Moore, C., Dolecek, C., Noghavi, M. M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet (London, England), 399(10325), 629-655. https://doi.org/10.1016/S0140-6736(21)02724-0

OMS. (2021, November 17). Resistencia a los antimicrobianos. Retrieved July 10, 2022, from https://www.who.int/es/news-room/fact-sheets/detail/antimicrobial-resistance

O’Neill, J. (2014). Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. Retrieved July 11, 2022, from https://wellcomecollection.org/works/rdpck35v

Rhodes, G., Huys, G., Swings, J., McGann, P., Hiney, M., Smith, P., & Pickup, R. W. (2000). Distribution of oxytetracycline resistance plasmids between aeromonads in hospital and aquaculture environments: implication of Tn1721 in dissemination of the tetracycline resistance determinant tet A. Applied and Environmental Microbiology, 66(9), 3883-3890. https://doi.org/10.1128/AEM.66.9.3883-3890.2000

Romero, J., Feijoo, C. G., & Navarrete, P. (2012). Antibiotics in Aquaculture – Use, Abuse and Alternatives. Health and Environment in Aquaculture. https://repositorio.uchile.cl/handle/2250/124163

Sørum, H. (2006). Antimicrobial Drug Resistance in Fish Pathogens. In F. Aarestrup (Ed.), Antimicrobial Resistance in Bacteria of Animal Origin (pp. 213-238). Washington DC: ASM Press. https://doi.org/10.1128/9781555817534.ch13

Troell, M., Naylor, R. L., Metian, M., Beveridge, M., Tyedmers, P. H., Folke, C., Arrow, K.J., Barrett, S., Crépin, A., Ehrlich, P.R., Gren, A., Kautsky, N., Levin., S.A., Nyborg, K.,Österblom, H., Polasky, S., Scheffer, M., Walker, B.H., Xepapadeas, T., de Zeeuw, A. (2014). Does aquaculture add resilience to the global food system Proceedings of the National Academy of Sciences of the United States of America, 111(37), 13257-13263. https://doi.org/10.1073/PNAS.1404067111

Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., Laxminarayan, R., Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences of the United States of America, 112(18), 5649-5654. https://doi.org/10.1073/PNAS.1503141112

Verraes, C., van Boxstael, S., van Meervenne, E., van Coillie, E., Butaye, P., Catry, B., de Schaetzen, M., Van, X., Imberechts, H., Dierick, K., Daube. G., Saegerman, C., De Block, J., Dewulf., J., Herman, L. (2013). Antimicrobial Resistance in the Food Chain: A Review. International Journal of Environmental Research and Public Health, 10(7), 2643. https://doi.org/10.3390/IJERPH10072643

Published

2023-09-01

Issue

Section

Original scientific papers (evaluated by academic peers)

Comentarios (ver términos de uso)

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>