Model 5E and teaching thermodynamics. Design and evaluation of a teaching-learning sequence

Authors

DOI:

https://doi.org/10.15359/ru.37-1.22

Keywords:

Thermodynamics, 5E Model, Design-based research, Secondary education

Abstract

[Objective] The objective of this investigation is to document the design, implementation and evaluation process of a teaching-learning sequence based on the 5E model for teaching the concepts of heat and temperature. [Methodology] Using a design-based research methodology, the implementation of a teaching-learning sequence was designed, implemented, and evaluated with secondary school students between 13 to 15 years old. Nineteen (19) students from two Mexican schools participated, organized into two groups, one from each school. Using a pretest –  posttest experimental design, quantitative data were recorded related to the students' knowledge about the use of the concepts of heat and temperature to explain natural phenomena, as well as qualitative data obtained during sessions with the students.  Quantitative data were analyzed using the Shapiro-Wilk test and two-factor ANOVA using JASP with p≤0.05. In addition, a triangulation with qualitative data was performed to support the conclusions. [Results] The results obtained showed positive effects related to the knowledge that students achieved during implementation of the sequence. Positive effects were also found in the qualitative evidence, where it was observed that the conceptual integration displayed by the students was sufficient to explain, in a coherent and complex way, the natural phenomena related to the concepts of heat and temperature. [Conclusions] The teaching-learning sequence achieved the proposed learning goals related to the concepts of heat and temperature. A list of design principles is included that is intended as a guide for other teachers interested in adapting this experience to their local contexts.

References

Andrini, V. S. (2016). The Effectiveness of Inquiry Learning Method to Enhance Students’ Learning Outcome: A Theoritical and Empirical Review. Journal of Education and Practice, 7(3), 38-42.

Baierlein, R. (1990). The meaning of temperature. The Physics Teacher, 28(2), 94-96. https://doi.org/10.1119/1.2342948

Barragán, A., & Hernández, A. (2010). Detección y clasificación de errores conceptuales en calor y temperatura. Latin-American Journal of Physics Education, 4(2), 399-407.

Barrow, L. H. (2006). A Brief History of Inquiry: From Dewey to Standards. Journal of Science Teacher Education, 17(3), 265-278. https://doi.org/10.1007/s10972-006-9008-5

Bauman, R. P. (1992). Physics that textbook writers usually get wrong: II. Heat and energy. The Physics Teacher, 30(6), 353-356. https://doi.org/10.1119/1.2343574

Bevins, S., & Price, G. (2016). Reconceptualising inquiry in science education. International Journal of Science Education, 38(1), 17-29. https://doi.org/10.1080/09500693.2015.1124300

Bybee, R. W. (2015). El modelo de enseñanza 5E del BSCS. Creando momentos de enseñanza. National Science Teachers Association.

Couso, D. (2014). De la moda de “aprender indagando” a la indagación para modelizar: una reflexión crítica. En M. A. Héras, A. Lorca, B. Vázquez, A. Wamba y R. Jiménez (Coords.), Investigación y transferencia para una educación en ciencias: Un reto emocionante (pp. 1-28). Huelva, España: Servicio de Publicaciones Universidad de Huelva.

De Benito Crosetti, B., & Salinas Ibáñez, J. M. (2016). La Investigación Basada en Diseño en Tecnología Educativa. Revista Interuniversitaria de Investigación en Tecnología Educativa, (0), 44-59. https://doi.org/10.6018/riite2016/260631

Domínguez, J. M., de Pro, A., & García-Rodeja, E. (1998). Las partículas de la materia y su utilización en el campo conceptual del calor y temperatura. Enseñanza de las Ciencias, 16(3), 461-475. https://doi.org/10.5565/rev/ensciencias.4121

Forcada Romanos, I. (2014). Errores conceptuales en Física en alumnos de E.S.O. y Bachillerato. Propuestas de resolución (Universidad Pública de Navarra). Universidad Pública de Navarra. https://hdl.handle.net/2454/14503

Gómez Llombart, V., & Gavidia Catalán, V. (2015). Describir y dibujar en ciencias. La importancia del dibujo en las representaciones mentales del alumnado. Revista Eureka sobre enseñanza y divulgación de las ciencias, 12(3), 441-455. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2015.v12.i3.04

Greca, I. M., Ortiz-Revilla, J., & Arriassecq, I. (2021). Diseño y evaluación de una secuencia de enseñanza-aprendizaje STEAM para Educación Primaria. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 18(1), 1-20. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2021.v18.i1.1802

Guisasola Aranzabal, J., Ametller, J., & Zuza, K. (2021). Investigación basada en el diseño de Secuencias de Enseñanza-Aprendizaje: una línea de investigación emergente en Enseñanza de las Ciencias. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 18(1), 1-18. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2021.v18.i1.1801

Jewett, J. W. (2008). Energy and the Confused Student III: Language. The Physics Teacher, 46(3), 149-153. https://doi.org/10.1119/1.2840978

Lawson, A. E. (1994). Uso de los ciclos de aprendizaje para la enseñanza de destrezas de razonamiento científico y de sistemas conceptuales. Enseñanza de las Ciencias. Revista de investigación y experiencias didácticas, 12(2), 165-187. https://doi.org/10.5565/rev/ensciencias.4439

Luna, M. T., Fortich, É. P., Pinto, L. C., & Silva, A. (2018). La lengua escrita en preescolar: una propuesta socioconstructivista con apoyo de recursos informáticos. Actualidades Investigativas en Educación, 19(1). https://doi.org/10.15517/aie.v19i1.34584

Mendoza Vergara, C. M., & Barreto Tovar, C. H. (2017). El aprendizaje por indagación hacia la alfabetización científica de los estudiantes en la IE N. ° 3 Santa Catalina de Siena de Maicao - La Guajira. Revista Bio-grafía Escritos sobre la biología y su enseñanza, 10(19), 1238. https://doi.org/10.17227/bio-grafia.extra2017-7296

Ruiz Macías, C., Bañas Sierra, C., & Mellado Jiménez, V. (2003). Las ideas alternativas sobre la conservación de la energía, calor y temperatura del alumnado de primer ciclo de Educación Secundaria Obligatoria. Campo abierto: Revista de educación, (24), 99-126.

SEP. (2017). Aprendizajes clave para la educación. Ciencias y Tecnología. Educación secundaria. Plan y programas de estudio, orientaciones didácticas y sugerencias de evaluación. En Aprendizajes clave (Vol. 136). Secretaría de Educación Pública.

Tecpan, S., & Hernández-Silva, C. (2017). Aprendizaje por indagación para la construcción de arquetipos en física; el caso de un curso para formación de profesores en Chile. Latin-American Journal of Physics Education, 11(2), 20. http://www.lajpe.org/jun17/2320_AAPT_2017.pdf

Tinkler, T., Kelly, M., & Florez, I. R. (2018). 2018 Learning how to think like an engineer: a design-based research study of kid spark education’s curriculum in kindergarten. https://digital.sandiego.edu/npi-youth/4

Tour, E., Gindidis, M., & Newton, A. (2019). Learning digital literacies through experiential digital storytelling in an EAL context: an exploratory study. Innovation in Language Learning and Teaching, 15(1), 1-16. https://doi.org/10.1080/17501229.2019.1659278

Additional Files

Published

2023-06-22

Issue

Section

Original scientific papers (evaluated by academic peers)

Comentarios (ver términos de uso)

Most read articles by the same author(s)

<< < 3 4 5 6 7 8 9 10 11 12 > >>