Potential Pesticide Misuse in Agriculture Farms from Two Costa Rican Provinces

Authors

DOI:

https://doi.org/10.15359/ru.38-1.33

Keywords:

pesticide misuse, storage rooms, product formulation, recommended dose, food crops

Abstract

Pesticide misuse by farmers poses hazards to human, animal, and environmental health. [Objective] This study aimed to document potential pesticide formulation misuse in agricultural farms. [Methodology] Inadequate storage practices, incorrect pesticide selection, and pesticide formulation overuse were documented through interviews and photographs on 13 agricultural farms from the Cartago and Guanacaste provinces of Costa Rica between August 2022 and April 2023. [Results] Storage room characteristics in many farms do not comply with safety standards prescribed by the Costa Rican Ministry of Agriculture and Livestock. Different active ingredients with herbicidal, fungicidal, insecticidal, and bactericidal properties are used in crop species for which they are not recommended. These substances include those from the carbamate, pyridine, cyclohexanedione, pyrethroid, conazole, benzothiazinone, oxadiazine, and phthalimide chemical groups in Cartago province, and from the neonicotinoid and pyrethroid chemical groups in Guanacaste province. Many pesticide formulations are utilized in quantities exceeding the manufacturers' recommendations. Among these formulations were bifenthrin, captan, oxamyl, cypermethrin, mancozeb, dimethoate, and deltamethrin in Cartago province, and imidacloprid in Guanacaste province. [Conclusions] These substances and their secondary metabolites have the potential to move across different environmental compartments such as water, soil, and air, thereby negatively affecting the health of community members rather than just the farmers applying these formulations. Well-established pesticide education programs based on on-site visits to farmers can enhance awareness about implementing good practices and ensure rational use of these substances, with positive results in non-target organisms such as humans and ecosystem service providers as well as natural and anthropogenic ecosystems.

References

AlKahtane, A. A., Alarifi, S., Al-Qahtani, A. A., Ali, D., Alomar, S. Y., Aleissia, M. S., & Alkahtani, S. (2018). Cytotoxicity and Genotoxicity of Cypermethrin in Hepatocarcinoma Cells: A Dose- and Time-Dependent Study. Dose-Response, 16(2), Article 155932581876088. https://doi.org/10.1177/1559325818760880

Axelstad, M., Boberg, J., Nellemann, C., Kiersgaard, M., Jacobsen, P. R., Christiansen, S., Hougaard, K. & Hass, U. (2011). Exposure to the Widely Used Fungicide Mancozeb Causes Thyroid Hormone Disruption in Rat Dams but No Behavioral Effects in the Offspring. Toxicological Sciences, 120(2), 439–446. https://doi.org/10.1093/toxsci/kfr006

Cecconi, S., Paro, R., Rossi, G., & Macchiarelli, G. (2007). The Effects of the Endocrine Disruptors Dithiocarbamates on the Mammalian Ovary with Particular Regard to Mancozeb. Current Pharmaceutical Design, 13(29), 2989–3004. https://doi.org/10.2174/138161207782110516

Chen, C., Guo, W., & Ngo, H. H. (2019). Pesticides in stormwater runoff—A mini review. Frontiers of Environmental Science & Engineering, 13(5), 72. https://doi.org/10.1007/s11783-019-1150-3

Christen, V., Joho, Y., Vogel, M., & Fent, K. (2019). Transcriptional and physiological effects of the pyrethroid deltamethrin and the organophosphate dimethoate in the brain of honey bees (Apis mellifera). Environmental Pollution, 244, 247–256. https://doi.org/10.1016/j.envpol.2018.10.030

Dai, P., Wang, Q., Sun, J., Liu, F., Wang, X., Wu, Y., & Zhou, T. (2009). Effects of sublethal concentrations of bifenthrin and deltamethrin on fecundity, growth, and development of the honeybee Apis mellifera ligustica. Environmental Toxicology and Chemistry, 29(3), 644–649. https://doi.org/10.1002/etc.67

De Lima E Silva, C., Brennan, N., Brouwer, J. M., Commandeur, D., Verweij, R. A., & Van Gestel, C. A. M. (2017). Comparative toxicity of imidacloprid and thiacloprid to different species of soil invertebrates. Ecotoxicology, 26(4), 555–564. https://doi.org/10.1007/s10646-017-1790-7

Dogan, D., Can, C., Kocyigit, A., Dikilitas, M., Taskin, A., & Bilinc, H. (2011). Dimethoate-induced oxidative stress and DNA damage in Oncorhynchus mykiss. Chemosphere, 84(1), 39–46. https://doi.org/10.1016/j.chemosphere.2011.02.087

Gan, J., Yates, S. R., Papiernik, S., & Crowley, D. (1998). Application of Organic Amendments To Reduce Volatile Pesticide Emissions from Soil. Environmental Science & Technology, 32(20), 3094–3098. https://doi.org/10.1021/es9802100

Handford, C. E., Elliott, C. T., & Campbell, K. (2015). A review of the global pesticide legislation and the scale of challenge in reaching the global harmonization of food safety standards. Integrated Environmental Assessment and Management, 11(4), 525–536. https://doi.org/10.1002/ieam.1635

Hu, J., Li, Y., Li, J., Pan, C., He, Z., Dong, H., & Xu, L. (2011). Toxic effects of cypermethrin on the male reproductive system: With emphasis on the androgen receptor. Journal of Applied Toxicology, 33(7), 576–585. https://doi.org/10.1002/jat.1769

Jepson, P. C., Efe, E., & Wiles, J. A. (1995). The toxicity of dimethoate to predatory coleoptera: Developing an approach to risk analysis for broad-spectrum pesticides. Archives of Environmental Contamination and Toxicology, 28(4). https://doi.org/10.1007/BF00211633

Johanif, N., Huff Hartz, K. E., Figueroa, A. E., Weston, D. P., Lee, D., Lydy, M. J., Connon, R. & Poynton, H. C. (2021). Bioaccumulation potential of chlorpyrifos in resistant Hyalella azteca: Implications for evolutionary toxicology. Environmental Pollution, 289, Article 117900. https://doi.org/10.1016/j.envpol.2021.117900

Kammel, D. W. (1991). PESTICIDE STORAGE, MIXING, AND LOADING SITES.

Kanemoto-Kataoka, Y., Oyama, T. M., Ishibashi, H., & Oyama, Y. (2017). Zinc is a determinant of the cytotoxicity of Ziram, a dithiocarbamate fungicide, in rat thymic lymphocytes: Possible environmental risks. Toxicology Research, 6(4), 499–504. https://doi.org/10.1039/C7TX00052A

Kumar, A., Amand, B., Saket, C., Mukhopadhyay, K., & Sharma, N. (2015). Mechanism of Deltamethrin induced Immunotoxicity: Current and Future Perspectives. Receptors & Clinical Investigation, 2, Article e578. https://www.smartscitech.com/index.php/rci/article/view/335

Laycock, I., Lenthall, K. M., Barratt, A. T., & Cresswell, J. E. (2012). Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumble bees (Bombus terrestris). Ecotoxicology, 21(7), 1937–1945. https://doi.org/10.1007/s10646-012-0927-y

Li, Q., Kobayashi, M., & Kawada, T. (2011). Ziram induces apoptosis and necrosis in human immune cells. Archives of Toxicology, 85(4), 355–361. https://doi.org/10.1007/s00204-010-0586-9

Lu, Q., Sun, Y., Ares, I., Anadón, A., Martínez, M., Martínez-Larrañaga, M.-R., Yuan, Z., Wang, X. & Martínez, M.-A. (2019). Deltamethrin toxicity: A review of oxidative stress and metabolism. Environmental Research, 170, 260–281. https://doi.org/10.1016/j.envres.2018.12.045

Lulla, A., Barnhill, L., Bitan, G., Ivanova, M. I., Nguyen, B., O’Donnell, K., Stahl, M., Yamashiro, C., Klärner, F-G., Schrader, T., Sagasti,A. & Bronstein, J. M. (2016). Neurotoxicity of the Parkinson Disease-Associated Pesticide Ziram Is Synuclein-Dependent in Zebrafish Embryos. Environmental Health Perspectives, 124(11), 1766–1775. https://doi.org/10.1289/EHP141

Martikainen, E. (1996). Toxicity of Dimethoate to Some Soil Animal Species in Different Soil Types. Ecotoxicology and Environmental Safety, 33(2), 128–136. https://doi.org/10.1006/eesa.1996.0016

Michalak, I., & Chojnacka, K. (2014). Biocides. Encyclopedia of Toxicology (pp. 461–463). https://doi.org/10.1016/B978-0-12-386454-3.00472-3

Ministry of Agriculture and Livestock. (2010). Uso y Manejo de Plaguicidas. https://www.mag.go.cr/bibliotecavirtual/T01-10313.pdf

National Association of State Departments of Agriculture Research Foundation. (2014). National Pesticide Applicator Certification Core Manual.

Paolillo, A. (2020). Proper storage of pesticides.

Perocco, P., Alessandra Santucci, M., Campani, A. G., & Forti, G. C. (1989). Toxic and DNA‐damaging activities of the fungicides mancozeb and thiram (TMTD) on human lymphocytes in vitro. Teratogenesis, Carcinogenesis, and Mutagenesis, 9(2), 75–81. https://doi.org/10.1002/tcm.1770090203

Reuber, M. D. (1984). Carcinogenicity of dimethoate. Environmental Research, 34(2), 193–211. https://doi.org/10.1016/0013-9351(84)90089-6

Shukla, Y., Yadav, A., & Arora, A. (2002). Carcinogenic and cocarcinogenic potential of cypermethrin on mouse skin. Cancer Letters, 182(1), 33–41. https://doi.org/10.1016/S0304-3835(02)00077-0

Silva, M. S., De Souza, D. V., Alpire, Malinverni, M. E. S., A., Da Silva, C. D. M., Da Silva, R. C. B., Viana, M. D. B., Tizuko, C., Oshima, F. & Ribeiro, D. A. (2021). Dimethoate induces genotoxicity as a result of oxidative stress: In vivo and in vitro studies. Environmental Science and Pollution Research, 28(32), 43274–43286. https://doi.org/10.1007/s11356-021-15090-z

Soares, H. M., Jacob, C. R. O., Carvalho, S. M., Nocelli, R. C. F., & Malaspina, O. (2015). Toxicity of Imidacloprid to the Stingless Bee Scaptotrigona postica Latreille, 1807 (Hymenoptera: Apidae). Bulletin of Environmental Contamination and Toxicology, 94(6), 675–680. https://doi.org/10.1007/s00128-015-1488-6

Suchail, S., Guez, D., & Belzunces, L. P. (2000). Characteristics of imidacloprid toxicity in two Apis mellifera subspecies. Environmental Toxicology and Chemistry, 19(7), 1901–1905. https://doi.org/10.1002/etc.5620190726

United Nations Environment Programme. (2022). Environmental Dimensions of Antimicrobial Resistance: Summary for Policymakers. https://wedocs.unep.org/bitstream/handle/20.500.11822/38373/antimicrobial_R.pdf

Wang, Q.-L., Zhang, Y.-J., Zhou, C.-X., Zhang, J., Dou, Y., & Li, Q.-Q. (2013). Risk assessment of mouse gastric tissue cancer induced by dichlorvos and dimethoate. Oncology Letters, 5(4), 1385–1389. https://doi.org/10.3892/ol.2013.1155

Yadav, R., Shinde, N. G., Patil, K. T., Kote, A., & Kadam, P. (2023). Deltamethrin Toxicity: Impacts on Non-Target Organisms and the Environment. Environment and Ecology. 41(3D), 2039–2043. https://doi.org/10.60151/envec/VFHT1065

Yang, Y., Ma, S., Liu, F., Wang, Q., Wang, X., Hou, C., Wu, Y., Gao, J., Zhang, L., Liu, Y., Diao, Q. & Dai, P. (2019). Acute and chronic toxicity of acetamiprid, carbaryl, cypermethrin and deltamethrin to Apis mellifera larvae reared in vitro. Pest Management Science, 76(3), 978–985. https://doi.org/10.1002/ps.5606

Zimdahl, R. L. (2018). Herbicides and Plants. In Fundamentals of Weed Science (pp. 417–443). https://doi.org/10.1016/B978-0-12-811143-7.00014-7

Published

2024-11-30

How to Cite

Potential Pesticide Misuse in Agriculture Farms from Two Costa Rican Provinces. (2024). Uniciencia, 38(1), 1-12. https://doi.org/10.15359/ru.38-1.33

Issue

Section

Original scientific papers (evaluated by academic peers)

How to Cite

Potential Pesticide Misuse in Agriculture Farms from Two Costa Rican Provinces. (2024). Uniciencia, 38(1), 1-12. https://doi.org/10.15359/ru.38-1.33

Comentarios (ver términos de uso)

Most read articles by the same author(s)