Characterization of inequation tasks in primary school textbooks

Authors

DOI:

https://doi.org/10.15359/ru.38-1.25

Keywords:

Mathematical inequality, Early algebra, Inequations, Math task, Primary education

Abstract

[Objective] This study characterized mathematical inequation tasks in Chilean primary school textbooks for 4th and 5th graders (9 and 10 year olds). [Methodology] A qualitative descriptive study was conducted considering the following six categories: algebraic practices involved, syntactic structure of the expressions, meaning of the concept of inequation, resolution strategies, level of cognitive demand, and context. The sample is comprised of 206 tasks from math textbooks. [Results] The characterised tasks have few practices leading to algebraic thinking, and it is the alphanumeric symbolic representation the one that predominantly stands out within these practices. The structure of the expressions shows little variety for generalising and reasoning, the latter having repercussions on the resolution strategies, which are not progressively addressed in order to improve their comprehension. The proposed tasks present different meanings of inequation. Regarding the cognitive demand, most of the tasks consist of connected and unconnected procedures. Finally, the most frequent contexts are mathematical, while the ones with the least presence are personal, social, and occupational contexts. [Conclusions] It is concluded that improving task design is necessary. The proposed categories are a tool to visualise which elements are taken into consideration and to improve inequation tasks.

References

Agencia de Calidad de la Educación (2019). Aprendiendo de los errores: Un análisis de los errores frecuentes de los estudiantes de 4º básico en las pruebas Simce y TIMSS y sus implicancias pedagógicas.

Ayala-Altamirano, C., Molina, M. y Ambrose, R. (2022). Fourth graders’ expression of the general case. ZDM Mathematics Education 54, 1377-1392 https://doi.org/10.1007/s11858-022-01398-8

Blanton, M. (2017). Algebraic reasoning in Grades 3-5. En M. Battista (Ed.), Reasoning and sense making in the mathematics classroom Grades 3-5 (pp. 67-102). NCTM.

Blanton, M., Brizuela, B., Stephens, A., Knuth, E., Isler, I., Gardiner, A., Stroud, R., Fonger, N. y Stylianou, D. (2018). Implementing a framework for early algebra. En C. Kieran (Ed.), Teaching and learning algebraic thinking with 5- to 12-year-olds: The global evolution of an emerging field of research and practice (pp. 27-49). Springer. http://doi.org/10.1007/978-3-319-68351-5_2

Blanton, M., Levi, L., Crites, T. y Dougherty, B. J. (2011). Developing essential understanding of algebraic thinking for teaching mathematics in Grades 3-5. NCTM.

Borello, M. (2010). Un planteamiento de resignificación de las desigualdades a partir de las prácticas didácticas del profesor: Un enfoque socioepistemológico. [Tesis doctoral, Centro de investigación en ciencia aplicada y tecnología avanzada. Instituto Politécnico Nacional].

Botty, H. M. R. H., Yusof, H. J. H. M., Shahrill, M. y Mahadi, M. A. (2015). Exploring students’ understanding on ‘inequalities.’ Mediterranean Journal of Social Sciences, 6(5), 218-227. https://doi.org/10.5901/mjss.2015.v6n5s1p218

Carraher, D. W., Martínez, M. V. y Schliemann, A. D. (2008). Early algebra and mathematical generalization. ZDM Mathematics Education, 40, 3-22. https://doi.org/10.1007/s11858-007-0067-7

Castro, E., Rico, L. y Romero, I. (1997). Sistemas de representación y aprendizaje de estructuras numéricas. Enseñanza de las Ciencias, 15(3), 361-371. https://doi.org/10.5565/rev/ensciencias.4164

Christou, C., Pitta-Pantazi, D., Pittalis, M., Demosthenous, E. y Chimoni, M. (2023). Personalized mathematics and mathematics inquiry: A design framework for mathematics textbooks. En R. Leikin. (Ed.), Mathematical challenges for all. Research in Mathematics Education (pp. 71-92). Springer. https://doi.org/10.1007/978-3-031-18868-8_5

Ellis, A. B. y Özgür, Z. (2024). Trends, insights, and developments in research on the teaching and learning of algebra. ZDM Mathematics Education. 56, 199-210. https://doi.org/10.1007/s11858-023-01545-9

Fernández-Millán E. y Molina, M. (2016). Indagación en el conocimiento conceptual del simbolismo algebraico de estudiantes de secundaria mediante la invención de problemas. Enseñanza de las Ciencias, 34(1), 53-71. https://doi.org/10.5565/rev/ensciencias.1455

Ferretti, F., Santi, G. R. P. y Bolondi, G. (2022). Interpreting difficulties in the learning of algebraic inequalities, as an emerging macro-phenomenon in large scale assessment. Research in Mathematics Education, 24(3), 367-389. https://doi.org/10.1080/14794802.2021.2010236

Garrote, M., Hidalgo, J. y Blanco, L. (2004). Dificultades en el aprendizaje de las desigualdades e inecuaciones. Suma: Revista sobre Enseñanza y Aprendizaje de las Matemáticas, 46, 37-44.

Heredia, M. y Palacios, M (2014). Las inecuaciones lineales en la escuela: Algunas reflexiones sobre su enseñanza a partir de la identificación de dificultades y errores en su aprendizaje. [Tesis de licenciatura]. Universidad del Valle. https://hdl.handle.net/10893/7743

Hernández-Sampieri, R. y Mendoza, C. (2018). Metodología de la Investigación. McGraw Hill.

Kaput, J. J. (2008). What is algebra? What is algebraic reasoning? En J. J. Kaput, D. W. Carraher y M. L. Blanton (Eds.), Algebra in the early grades (pp. 5-17). Lawrence Erlbaum Associates. https://doi.org/10.4324/9781315097435-2

Kieran, C. (2004). Algebraic thinking in the early grades: What is it? The Mathematics Educator, 8(1), 139-151.

Kieran, C. y Martínez-Hernández, C. (2022). Structure sense at early ages: The case of equivalence of numerical expressions and equalities. En T. Rojano (Ed.), Algebra structure sense development amongst diverse learners (pp. 35-66). Routledge. https://doi.org/10.4324/9781003197867-3

Kirshner, P. (1989). The visual sintax of Algebra. Journal for Research in Mathematics Education 20(3), 274-287. https://doi.org/10.2307/749516

Lloyd, G., Herberl-Eisenmann, B. y Star, J. (2011). Expressions, equations, and functions: The big ideas and essential understandings. En R. M. Zbieck (Ed.), Developing essential understanding of expressions, equations, and functions Grades 6-8 (pp. 30-43). NCTM.

Martínez, S., Varas, L., López, R., Ortiz, A. y Solar, H. (2013). Álgebra para para futuros profesores de educación básica. SM. https://www.cpeip.cl/wp-content/uploads/2020/07/REFIP-Algebra_01.pdf

Mason, J. (2017). Overcoming the algebra barrier: Being particular about the general, and generally looking beyond the particular, in homage to Mary Boole. En S. Stewart (Ed.), And the rest is just algebra (pp. 97-117). Springer. https://doi.org/10.1007/978-3-319-45053-7_6

Ministerio de Educación de Chile [MINEDUC]. (2012). Bases Curriculares de la Enseñanza de Educación Matemática. Unidad de Currículum y Evaluación. https://www.curriculumnacional.cl/614/articles-22394_bases.pdf

Ministerio de Educación y Formación Profesional [MEFP]. (2022). Real Decreto 157/2022 de 02 de marzo, por el que se establece la ordenación y enseñanzas mínimas de la Educación Primaria. BOE, 52, 24386-24504. https://www.boe.es/eli/es/rd/2022/03/01/157

Molina, M. y Cañadas, M. C. (2018). La noción de estructura en el early algebra. En P. Flores, J. L. Lupiáñez e I. Segovia (Eds.), Enseñar matemáticas. Homenaje a los profesores Francisco Fernández y Francisco Ruiz (pp. 129-141). Atrio.

Mullis, I. V. S., Martin, M. O., Foy, P. y Arora, A. (2012). TIMSS 2011 international results in mathematics. TIMSS y PIRLS International Study Center.

National Governors Association Center for Best Practices and Council of Chief State School Officers. (2010). Common Core State Standards for Mathematics. Council of Chief State School Officers. https://learning.ccsso.org/wp-content/uploads/2022/11/Math_Standards1.pdf

Ngu, B. H., Phan, H. P., Yeung, A. S. y Chung, S. F. (2018). Managing element interactivity in equation solving. Educational Psychology Review 30, 255-272 https://doi.org/10.1007/s10648-016-9397-8

OECD (2022). PISA 2022 Marco de Matemáticas. OECD. https://pisa2022-maths.oecd.org/#Contexts

Ontario Ministry of Education. (2020). The Ontario curriculum, Grades 1-8: Mathematics 2020. Queen’s Printer for Ontario. https://www.dcp.edu.gov.on.ca/en/curriculum/elementary-mathematics

Paoletti, T., Stevens, I. y Vishnubhotla, M. (2021). Comparative and restrictive inequalities. The Journal of Mathematical Behavior, 63, Article 100895. https://doi.org/10.1016/j.jmathb.2021.100895

Penalva, M. D. C. y Llinares, S. (2011). Tareas matemáticas en la educación secundaria. En J. M. Goñi (Ed.), Didáctica de las Matemáticas (pp. 27-51). GRAO.

Pino-Fan, L. R., Lugo-Armenta, J. G., Cardelas, G. R. A., García, J., Peña, C. y Uicab-Campos, Y. (2024). Conflictos potenciales identificados en los libros de texto de matemáticas de educación básica de Chile para el estudio del álgebra. Journal of Research in Mathematics Education, 13(1), 59-86. https://doi.org/10.17583/redimat.14137

Radford, L. (2018). The emergence of symbolic algebraic thinking in primary school. En C. Kieran (Ed.), Teaching and learning algebraic thinking with 5- to 12-year-olds (pp. 3-25). Springer Cham. https://doi.org/10.1007/978-3-319-68351-5_1

Radford, L. (2022). Introducing equations in early algebra. ZDM Mathematics Education 54, 1151-1167. https://doi.org/10.1007/s11858-022-01422-x

Rico, L. (2009). Sobre las nociones de representación y comprensión en la investigación en educación matemática, PNA 4(1), 1-14. https://doi.org/10.30827/pna.v4i1.6172

Sievert, H., Van den Ham, AK. y Heinze, A. (2021). The role of textbook quality in first graders’ ability to solve quantitative comparisons: A multilevel analysis. ZDM Mathematics Education 53, 1417-1431. https://doi.org/10.1007/s11858-021-01266-x

Smith, M. S. y Stein, M. K. (1998). Selecting and creating mathematical tasks: From research to practice. Mathematics Teaching in the Middle School, 3(5), 344-350. https://doi.org/10.5951/MTMS.3.5.0344

Stephens, A., Ellis, A., Blanton, M. y Brizuela, B. (2017). Algebraic thinking in the elementary and middle grades. En J. Cai (Ed.), Compendium for research in mathematics education. Third handbook of research in mathematics education (pp. 386-420). NCTM.

Thanheiser, E. y Sugimoto, A. (2022). Justification in the context of elementary grades: Justification to develop and provide access to mathematical reasoning. En K. Bieda, A. M. Conner, K. W. Kosko y M. Staples (Eds.), Conceptions and consequences of mathematical argumentation, justification, and proof (pp. 35-48). Springer. https://doi.org/10.1007/978-3-030-80008-6_4

Valverde, G. A., Bianchi, L. J., Wolfe, R. G., Schmidt, W. H. y Houng, R. T. (2002). According to the book: Using TIMSS to investigate the translation of policy into practice through the world of textbooks. Kluwer Academic Publishers. https://doi.org/10.1007/978-94-007-0844-0_8

Vega-Castro, D. (2012). Perfiles de alumnos de educación secundaria relacionados con el sentido estructural manifestado en experiencias con expresiones algebraicas. [Tesis doctoral]. Universidad de Granada. http://hdl.handle.net/10481/31311

Warren, E. (2006). Comparative mathematical language in the elementary school: A longitudinal study. Educational Studies in Mathematics, 62(2), 169-189. https://doi.org/10.1007/s10649-006-4627-5

Published

2024-08-31

Issue

Section

Original scientific papers (evaluated by academic peers)

Comentarios (ver términos de uso)

Most read articles by the same author(s)

<< < 2 3 4 5 6 7 8 9 10 11 > >>