Efecto del ácido bórico y la luz en el número y biomasa de microtubérculos de papa cv. “Floresta”
DOI:
https://doi.org/10.15359/ru.31-2.9Keywords:
6-bencilaminopurina, cultivo de tejidos, microtuberización, Solanum tuberosumAbstract
Con el propósito de conocer la respuesta en el número y la biomasa de microtubérculos de papa (Solanum tuberosum L. “Floresta”), se evaluó, bajo condiciones de cultivo in vitro, el efecto de cuatro concentraciones de ácido bórico: 6.2 mg l-1, 7.75 mg l-1, 9.3 mg l-1 y 10.85 mg l-1 en dos condiciones: oscuridad y fotoperiodo de 16 horas luz y 8 horas de oscuridad. El medio que se utilizó como testigo fue Murashige y Skoog. El análisis de los datos para el número y la biomasa de microtubérculos fue significativo para la condición de oscuridad (p≤0,05). En relación con la concentración de ácido bórico y la interacción entre los factores, se obtuvieron diferencias significativas para la biomasa (p≤0,05). De manera que, en la condición de oscuridad, se obtuvo un mayor número de microtubérculos; sin embargo, su biomasa fue menor. Para la condición con iluminación, la biomasa fue mayor y el número de microtubérculos fue menor con respecto a la condición con oscuridad. La concentración de 9,3 mg l-1 de ácido bórico en ambas condiciones fue el mejor tratamiento para producir un mayor número y biomasa de microtubérculos. Las diferencias indicadas en este trabajo en relación con el número y la biomasa de microtubérculos probablemente son el resultado conjunto del genotipo y las condiciones específicas de cultivo. Aun así, se propone la utilización de una condición de iluminación para inducir microtubérculos más grandes y verdes.
References
Aksenova, N. P., Konstantinova, T. N., Golyanovskaya, S. A., Sergeeva, L. I., & Romanov, G. A. (2012). Hormonal regulation of tuber formation in potato plants. Russian Journal of Plant Physiology, 59(4), 451–466. http://dx.doi.org/10.1134/S1021443712040024
Aksenova, N. P., Konstantinova, T. N., Lozhnikova, V. N., Golyanovskaya, S. A., Gukasyan, I. A., Gatz, C., & Romanov, G. A. (2005). Photoperiodic and Hormonal Control of Tuberization in Potato Plants Transformed with the PHYB Gene from Arabidopsis. Russian Journal of Plant Physiology, 52(5), 623–628. http://dx.doi.org/10.1007/s11183-005-0092-8
Aksenova, N. P., Konstantinova, T. N., Lozhnikova, V. N., Golyanovskaya, S. A., & Sergeeva, L. I. (2009). Interaction between day length and phytohormones in the control of potato tuberization in the in vitro culture. Russian Journal of Plant Physiology, 56(4), 454–461. http://dx.doi.org/10.1134/S1021443709040037
Barquero, M., Gómez, L., Brenes, A., & Valverde, R. (2001). El tamaño del pote en la producción de semilla pre-básica de papa en invernadero. Agronomía Costarricense, 25(1), 61–66. Retrieved from http://www.mag.go.cr/rev_agr/v25n01_061.pdf
Cañal, M., Rodríguez, R., Fernández, B., Sánchez-Tames, R., & Majada, J. (2001). Fisiología del cultivo in vitro. Biotecnología Vegetal. 1(1), 3–9. Retrieved from https://revista.ibp.co.cu/index.php/BV/article/view/59
Desjardins, Y. (1995). Photosynthesis in vitro - on the factors regulating CO2 assimilation in micropropagation systems. Acta Horticulturae (ISHS), 393, 45–62. Retrieved from http://www.actahort.org/books/393/393_5.htm. http://dx.doi.org/10.17660/ActaHortic.1995.393.5
Dhital, S. P., & Lim, H. T. (2012). Microtuberization of potato (Solanum tuberosum L.) as influenced by supplementary nutrients, plant growth regulators, and in vitro culture conditions. Potato Research, 55(2), 97–108. http://dx.doi.org/10.1007/s11540-012-9212-y
Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2008). Infostat, Versión 2008, Grupo Infostat, Universidad Nacional de Córdoba, Argentina
Dobránszki, J., Magyar-Tábori, K., & Hudák, I. (2008). In vitro Tuberization in Hormone-Free Systems on Solidified Medium and Dormancy of Potato Microtubers. Fruit, Vegetable and Cereal Science and Biotechnology, 2(1), 82–94. Retrieved from http://www.globalsciencebooks.info/JournalsSup/images/0812/FVCSB_2(SI1)82-94o.pdf
Dobránszki, J., Tábóri, K. M., & Ferenczy, A. (1999). Light and genotype effects on in vitro tuberization of potato plantlets. Potato Research, 42(3-4), 483–488. http://dx.doi.org/10.1007/BF02358164
Donnelly, D. J., Coleman, W. K., & Coleman, S. E. (2003). Potato microtuber production and performance: A review. American Journal of Potato Research, 80(2), 103–115. http://dx.doi.org/10.1007/BF02870209
Ewing, E. E., Simko, I., Omer, E. A., & Davies, P. J. (2004). Polygene mapping as a tool to study the physiology of potato tuberization and dormancy. American Journal of Potato Research, 81(4), 281–289. http://dx.doi.org/10.1007/BF02871770
Garner, N., & Blake, J. (1989). The Induction and Development of Potato Microtubers In Vitro on Media Free of Growth Regulating Substances. Annals of Botany, 63(6): 663-674. https://doi.org/10.1093/oxfordjournals.aob.a087795
Gopal, J., Chamail, A., & Sarkar, D. (2004). In vitro production of microtubers for conservation of potato germplasm: effect of genotype, abscisic acid, and sucrose. In vitro Cellular & Developmental Biology. Plant., 40(5), 485–490. http://dx.doi.org/10.1079/IVP2004540
Gopal, J., Minocha, J. L., & Dhaliwal, H. S. (1998). Microtuberization in potato (Solanum tuberosum L.). Plant Cell Reports, 17(10), 794–798. http://dx.doi.org/10.1007/s002990050485
Gutiérrez-Soto, M., & Torres-Acuña, J. (2013). Síntomas asociados a la deficiencia de boro en la palma aceitera (Elaeis guineensis Jacq.) en Costa Rica. Agronomía Mesoamericana. 24(2), 441–449. http://dx.doi.org/10.15517/am.v24i2.12547
Hoque, M. E. (2010). In vitro tuberization in potato (Solanum tuberosum L .). Plant Omics Journal, 3(1), 7–11. Retrieved from http://www.pomics.com/hoque_3_1_2010_7_11.pdf
Lakhotia, N., Joshi, G., Bhardwaj, A. R., Katiyar-Agarwal, S., Agarwal, M., Jagannath, A., Kumar, A. (2014). Identification and characterization of miRNAome in root, stem, leaf and tuber developmental stages of potato (Solanum tuberosum L.) by high-throughput sequencing. BMC Plant Biology, 14(1), 6. http://dx.doi.org/10.1186/1471-2229-14-6
Li, H. Z., Zhou, W. J., Zhang, Z. J., Gu, H. H., Takeuchi, Y., & Yoneyama, K. (2005). Effect of γ-radiation on development, yield and quality of microtubers in vitro in Solanum tuberosum L. Biologia Plantarum, 49(4), 625–628. http://dx.doi.org/10.1007/s10535-005-0062-1
López, H. A., Sánchez-Rojo, S., Mora-Herrera, M. E., & Martínez-Gutierrez, R. (2012). Micro-Tuberization as a Long Term Effect of Hydrogen Peroxide on Potato Plants. American Journal of Potato Research, 89(3), 240–244. http://dx.doi.org/10.1007/s12230-011-9219-y
Motallebi, A., Kazemiani, S., & Yarmohamadi, F. (2013). Effect of sugar/osmotica levels on in vitro microtuberization of potato (Solanum tuberosum L.). Russian Agricultural Sciences, 39(2), 112–116. http://dx.doi.org/10.3103/S1068367413020146
Park, S. W., Jeon, J. H., Kim, H. S., Hong, S. J., Aswath, C., & Joung, H. (2009). The effect of size and quality of potato microtubers on quality of seed potatoes in the cultivar “Superior.” Scientia Horticulturae, 120(1), 127–129. http://dx.doi.org/10.1016/j.scienta.2008.09.004
Pruski, K., Astatkie, T., & Nowak, J. (2002). Jasmonate effects on in vitro tuberization and tuber bulking in two potato cultivars (Solanum tuberosum L.) under different media and photoperiod conditions. In vitro Cellular & Developmental Biology - Plant, 38(2), 203–209. doi:10.1079/IVP2001265
Puzina, T. I. (2004). Effect of Zinc Sulfate and Boric Acid on the Hormonal Status of Potato Plants in Relation to Tuberization. Russian Journal of Plant Physiology, 51(2), 209–215. http://dx.doi.org/10.1023/B:RUPP.0000019216.92202.4a
Seabrook, J. E. (2005). Light effects on the growth and morphogenesis of potato (Solanum tuberosum) in vitro: A Review. American Journal of Potato Research, 82(5), 353–367. http://dx.doi.org/10.1007/BF02871966
Sharma, A. K., Venkatasalam, E. P., & Singh, R. K. (2011). Micro-tuber production behaviour of some commercially important potato (Solanum tuberosum) cultivars. Indian Journal of Agricultural Sciences, 81(11), 1008–1013.
Sharma, S., Chanemougasoundharam, A., Sarkar, D., & Pandey, S. K. (2004). Carboxylic acids affect induction, development and quality of potato (Solanum tuberosum L.) microtubers grown in vitro from single-node explants. Plant Growth Regulation, 44(3), 219–229. http://dx.doi.org/10.1007/s10725-004-5827-6
Tadesse, M., Lommen, W. J. M., & Struik, P. C. (2001). Development of micropropagated potato plants over three phases of growth as affected by temperature in different phases. NJAS - Wageningen Journal of Life Sciences, 49(1), 53–66. http://dx.doi.org/10.1016/S1573-5214(01)80015-4
Tanaka, M., & Fujiwara, T. (2008). Physiological roles and transport mechanisms of boron: perspectives from plants. Pflügers Archiv - European Journal of Physiology, 456(4), 671–7. http://dx.doi.org/10.1007/s00424-007-0370-8
Vásquez, V., Montero-Astúa, M., & Rivera, C. (2004). Efecto de la infección de PVX y PVY en la producción de Solanum tuberosum en invernadero con los cultivares Floresta y Granola. Manejo Integrado de Plagas y Agroecología (Costa Rica), (73), 57–63.
Xu, X., van Lammeren, A., Vermeer, E., & Vreugdenhil, D. (1998). The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiology, 117(2), 575–584. http://dx.doi.org/10.1104/pp.117.2.575
Zhang, Z., Mao, B., Li, H., Zhou, W., Takeuchi, Y., & Yoneyama, K. (2005). Effect of salinity on physiological characteristics, yield and quality of microtubers in vitro in potato. Acta Physiologiae Plantarum, 27(4), 481–489. http://dx.doi.org/10.1007/s11738-005-0053-z
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors guarantee the journal the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
2. Authors can set separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, place it in an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
3. The authors have declared to hold all permissions to use the resources they provided in the paper (images, tables, among others) and assume full responsibility for damages to third parties.
4. The opinions expressed in the paper are the exclusive responsibility of the authors and do not necessarily represent the opinion of the editors or the Universidad Nacional.
Uniciencia Journal and all its productions are under Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
There is neither fee for access nor Article Processing Charge (APC)