Obtaining leveled heights by GPS leveling. Case study: Morona – Ecuador

Authors

DOI:

https://doi.org/10.15359/ru.36-1.26

Keywords:

GNSS, leveled heights, geodesic network, geoid undulation gradient, network of basic vertical control, geometric leveling

Abstract

The aim of the study was to demonstrate the applicability of GPS leveling to obtain accurate leveled heights for engineering purposes, in the canton of Morona, Ecuador. Two working scales were evaluated: cantonal (macro) and urban (micro), where the known vertices from which the height value was determined were points that belong to the local geodesic network of the canton. Based on the analysis of the geoid undulation gradient, 5 homogeneous zones of the gradient variation were defined; GPS leveling was applied in the two zones (zone 4 and 5) that had geodesic vertices and that also cover a larger area of the canton. The geoid undulation gradient values in the study area were highly variable, with errors of up to 24 mm/km. At the cantonal scale, errors were reached between 12.19 cm - 1.27 cm at 30 Km - 5.1 Km in zone 4, and 38.48 cm - 8.33 cm at 13 Km - 2.7 Km in zone 5, while on an urban scale, errors of 2.48 cm - 0.14 cm were found at 1.07 Km - 0.19 Km, respectively. Using GPS leveling, useful results are obtained for engineering jobs and geoscience jobs in general, that require the determination of leveled heights quickly and accurately. For the correct application of this technique, two determinants must be considered: the baseline distance and the geoid undulation gradient.

References

Banerjee, P., Foulger, G., Satyaprakash & Dabral, C. (1999). Geoid undulation modelling and interpretation at Ladak, NW Himalaya using GPS and levelling data. Journal of Geodesy, 73, 79-86. https://doi.org/10.1007/s001900050221

Blanco, M. (2010). Comparativa altimetría GPS + Geoide EGM08 frente a nivelación geométrica en obra lineal. (Tesis de grado), Universidad de Salamanca, Salamanca, España.

Fotopoulos, G., Kotsakis, C. & Sideris, M. (2003). How Accurately Can We Determine Orthometric Height Differences from GPS and Geoid Data? Journal of Surveying Engineering, 129(1), 1-11. https://doi.org/10.1061/(ASCE)0733-9453(2003)129:1(1)

Heiskanen, W. & Moritz, H. (1985). Physical Geodesy (4th ed.). Madrid: Editorial IGN.

Hofmann, B. & Moritz, H. (2005). Physical Geodesy. Austria: Springer.

Instituto Geográfico Militar. (2006). Especificaciones técnicas generales para la realización de cartografía topográfica a cualquier escala. Ecuador. http://www.igm.gob.ec/work/files/downloads/especcarto3.html

Kenyeres, A. (2016). Switzerland: Encyclopedia of Geodesy. In: E. Grafaend (Ed.), GPS/Leveling (pp.1-3). Springer International Publishing. https://doi.org/10.1007/978-3-319-02370-0

Odera, P. & Fukuda, Y. (2015). Comparison of Helmert and rigorous orthometric heights over Japan. Earth Planets and Space, 67(27). https://doi.org/10.1186/s40623-015-0194-2

Oropeza, O. (2010). Pendiente del terreno. México: Instituto Nacional de Ecología y Cambio Climático.

Palacios, I. & Arellano, K. (2021). Modelo predictivo del cambio de cobertura forestal en el Área de Conservación Municipal Quílamo – Cantón Morona. Revista Geoespacial, 18(1), 1-13. http://dx.doi.org/10.24133/geoespacial.v18i1.2201

Palacios, I. & Rodríguez, F. (2021). Economic valuation of environmental goods and services of the Protector Forest Kutukú – Shaimi, SE Ecuador. International Journal of Energy, Environment, and Economics, 27(2), 117-132.

Palacios, I. (2018). Evaluación multicriterio para la ubicación de un relleno sanitario en la ciudad de Macas, a través de la ponderación de sus variables con el Proceso Analítico Jerárquico, AHP. Revista de Ciencias de Seguridad y Defensa, 3(3), 83-94.

Palacios, I. (2019). Generación de un modelo de predicción de la variable ondulación geoidal, para la zona rural del cantón Guayaquil, mediante el uso del método Cokriging. (Tesis de grado), Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador.

Palacios, I. (2020). Generación de un modelo de crecimiento tendencial urbano de la ciudad de Macas (Ecuador) al año 2030, mediante técnicas de modelación espacial multivariable. (Tesis de maestría), Universitat de Barcelona, Barcelona, España.

Palacios, I., & Toulkeridis, T. (2020). Evaluation of the susceptibility to landslides through diffuse logic and analytical hierarchy process (AHP) between Macas and Riobamba in Central Ecuador. 2020 Seventh International Conference on eDemocracy & eGovernment (ICEDEG), (pp. 201-207). Buenos Aires, Argentina. doi:10.1109/ICEDEG48599.2020.9096879

Palacios, I., Castro, S. & Rodríguez, F. (2019). Almacenamiento de carbono como servicio ambiental en tres reservas naturales del Ecuador. Revista Geoespacial, 16(1), 1-14. http://dx.doi.org/10.24133/geoespacial.v16i1.1275

Palacios, I., Leiva, C., Buenaño, X., Chicaiza, E. & Toulkeridis, T. (2021). Geoid undulation modeling through the Cokriging method–A case study of Guayaquil, Ecuador. Geodesy and Geodynamics, 12(5), 356-367. https://doi.org/10.1016/j.geog.2021.04.004

Paredes, N. (1986). Determinación del datum vertical de La Libertad, Ecuador. Guayaquil, Ecuador: Instituto Oceanográfico y Antártico de la Armada del Ecuador.

Sánchez, L. & Martínez, W. (1997). Guía metodológica para la obtención de alturas sobre el nivel medio del mar utilizando el Sistema GPS. Bogotá, Colombia: Instituto Geográfico Agustín Codazzi.

Sánchez, L. (2003). Determinación de la superficie vertical de referencia para Colombia. (Tesis de doctorado), Technische Universität Dresden, Sajonia, Alemania.

Seeber, G. (2003). Satelllite Geodesy (2nd ed.). New York: Walter de Gruyter. https://doi.org/10.1515/9783110200089

Torge, W. (2001). Geodesy (3era. ed.). Berlín - New York: Walter de Gruyter. https://doi.org/10.1515/9783110879957

Published

2022-03-10

Issue

Section

Original scientific papers (evaluated by academic peers)

Comentarios (ver términos de uso)

Most read articles by the same author(s)

<< < 42 43 44 45 46 47 48 49 50 51 > >>