Caracterización estructural de vesículas modificadas con quitosano
DOI:
https://doi.org/10.15359/ru.32-1.3Palabras clave:
Vesículas, quitosomas, fosfolípidos, polielectrolitos, modificación de superficies.Resumen
Vesículas a base de L-α-fosfatidilcolina (PC) y mezclas de PC/fosfogliceroles fueron caracterizadas por medio de dispersión de luz dinámica (DLS), microscopía electrónica de barrido-criogénico (Cryo-SEM) y calorimetría de titulación isotérmica (ITC). La incorporación de fosfogliceroles en la formulación de vesículas a base PC disminuyó el tamaño y la polidispersidad de las partículas, debido a un mayor empaquetamiento de las cadenas alifáticas por medio de interacciones de van der Waals. Además, resultó en una disminución significativa de la carga superficial de -75 mV comparada con el potencial Z (ξ) de las vesículas a base de PC. Ambos sistemas fueron modificados usando un polielectrolito catiónico (quitosano) de un peso molecular de 865 kDa y con un grado de desacetilación de 77 %. La naturaleza aniónica de la vesícula fosfolipídica resultó en una efectiva interacción con el polielectrolito catiónico mediante fuerzas del tipo electrostática, la cual fue determinada por medio de ITC. Los resultados fueron complementados mediante la determinación de potencial Z de los sistemas modificados, lo cual demostró que no es necesaria una inversión completa de la carga inicial de la superficie de la vesícula para asegurar el recubrimiento de esta. La adición de concentraciones de quitosano mayores a 0,1 mg/mL condujo a la agregación de las vesículas, lo cual fue demostrado mediante Cryo-SEM y DLS. Este efecto fue más significativo para el sistema basado en dimiristoilfosfoglicerol sal de sodio y quitosano, debido a la fuerte atracción electrostática.
Referencias
Alves, F. R., Zaniquelli, M. E. D., Loh, W., Castanheira, E. M. S., Real Oliveira, M. E. C. D., y Feitosa, E. (2007). Vesicle-micelle transition in aqueous mixtures of the cationic dioctadecyldimethylammonium and octadecyltrimethylammonium bromide surfactants. Journal of Colloid and Interface Science, 316(1), 132–139. doi: https://doi.org/10.1016/j.jcis.2007.08.027
ASTM D2857-16. (2016). Standard Practice for Dilute Solution Viscosity of Polymers, West Conshohocken, PA. Recuperado de www.astm.org.
Balazs, D. A., & Godbey, W. T. (2010). Liposomes for Use in Gene Delivery. Journal of Drug Delivery, 2011, e326497. doi: https://doi.org/10.1155/2011/326497
Barenholz, Y., y Lasic, D. D. (1996). Handbook of Nonmedical Applications of Liposomes. CRC Press.
Czechowska-Biskup, R., Jarosińska, D., Rokita, B., Ulański, P., y Rosiak, J. M. (2012). Determination of the degree of deacetylation of chitosan. Comparison of methods, Progress on Chemistry and Application of Chitin and its Derivatives. 17, 5–20. Recuperado de www.ptchit.lodz.pl/file-PTChit_(t9ye7r6bm2t0y8kc).pdf
Damhorst, G. L., Smith, C. E., Salm, E. M., Sobieraj, M. M., Ni, H., Kong, H., y Bashir, R. (2013). A liposome-based ion release impedance sensor for biological detection. Biomedical Microdevices, 15(5), 895–905. doi: https://doi.org/10.1007/s10544-013-9778-4
Evans D. F., y Wennerströn H. (1999). The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet (2nd ed.). Wiley-VCH.
Hellweg, T., Brûlet, A., Lapp, A., Robertson, D., y Koetz, J. (2002). Temperature and polymer induced structural changes in SDS/decanol based multilamellar vesicles, 4(12), 2612–2616. doi: https://doi.org/10.1039/B109643P
Hristova, K., Kenworthy, A., y McIntosh, T. J. (1995). Effect of Bilayer Composition on the Phase Behavior of Liposomal Suspensions Containing Poly(ethylene glycol)-Lipids. Macromolecules, 28(23), 7693–7699. doi: https://doi.org/10.1021/ma00127a015
Hristova, K., y Needham, D. (1995). Phase Behavior of a Lipid/Polymer-Lipid Mixture in Aqueous Medium. Macromolecules, 28(4), 991–1002. doi: https://doi.org/10.1021/ma00108a029
Kenworthy, A. K., Simon, S. A., y McIntosh, T. J. (1995). Structure and phase behavior of lipid suspensions containing phospholipids with covalently attached poly(ethylene glycol). Biophysical Journal, 68(5), 1903–1920. doi: https://doi.org/10.1016/S0006-3495(95)80368-1
Kim, T.-H., Han, Y.-S., Jang, J.-D., y Seong, B.-S. (2014). Size control of surfactant vesicles made by a mixture of cationic surfactants and organic derivatives. Journal of Nanoscience and Nanotechnology, 14(10), 7809–7815. doi: https://doi.org/10.1166/jnn.2014.9477
Koirala, S., Roy, B., Guha, P., Bhattarai, R., Sapkota, M., Nahak, P. y Panda, A. K. (2016). Effect of double tailed cationic surfactants on the physicochemical behavior of hybrid vesicles. RSC Adv., 6(17), 13786-13796. doi: https://doi.org/10.1039/C5RA17774J
Lasic, D. D. (1998). Novel applications of liposomes. Trends in Biotechnology, 16(7), 307–321. doi: https://doi.org/10.1016/S0167-7799(98)01220-7
Madrigal-Carballo, S., Lim, S., Rodriguez, G., Vila, A. O., Krueger, C. G., Gunasekaran, S., y Reed, J. D. (2010). Biopolymer coating of soybean lecithin liposomes via layer-by-layer self-assembly as novel delivery system for ellagic acid. Journal of Functional Foods, 2(2), 99–106. doi: https://doi.org/10.1016/j.jff.2010.01.002
Mertins, O., y Dimova, R. (2011). Binding of chitosan to phospholipid vesicles studied with isothermal titration calorimetry. Langmuir: The ACS Journal of Surfaces and Colloids, 27(9), 5506–5515. doi: https://doi.org/10.1021/la200553t
Mertins, O., y Dimova, R. (2013). Insights on the interactions of chitosan with phospholipid vesicles. Part II: Membrane stiffening and pore formation. Langmuir: The ACS Journal of Surfaces and Colloids, 29(47), 14552–14559. doi: https://doi.org/10.1021/la4032199
Pascoe, R. J., y Foley, J. P. (2003). Characterization of surfactant and phospholipid vesicles for use as pseudostationary phases in electrokinetic chromatography. Electrophoresis, 24(24), 4227–4240. doi: https://doi.org/10.1002/elps.200305655
Pérez, M. (2010). Los liposomas: Usos y perspectivas. Revista Cubana de Química.16, 8-33.
Prabhu, P., Shetty, R., Koland, M., Vijayanarayana, K., Vijayalakshmi, K., Nairy, M. H., y Nisha, G. (2012). Investigation of nano lipid vesicles of methotrexate for anti-rheumatoid activity. International Journal of Nanomedicine, 7, 177–186. doi: https://doi.org/10.2147/IJN.S25310
Quemeneur, F., Rammal, R., Rinuaudo, M., y Pépin-Donat, B. (2007). Large and giant vesicles Decorated with chitosan: Effects of pH, salt or glucose stress, and surface adhesion. Biomacromolecules, 8(8), 2512–9. doi: https://doi.org/10.1021/bm061227a
Quemeneur, F., Rinaudo, M., Maret, G., y Pépin-Donat, B. (2010). Decoration of lipid vesicles by polyelectrolytes: mechanism and structure, 6(18), 4471–4481. doi: https://doi.org/10.1039/C0SM00154F
Robertson, D., Hellweg, T., Tiersch, B., y Koetz, J. (2004). Polymer-induced structural changes in lecithin/sodium dodecyl sulfate-based multilamellar vesicles. Journal of Colloid and Interface Science, 270(1), 187–194. doi: https://doi.org/10.1016/j.jcis.2003.09.013
Sabín, J., Prieto, G., Ruso, J. M., Hidalgo-Álvarez, R., y Sarmiento, F. (2006). Size and stability of liposomes: a possible role of hydration and osmotic forces. The European Physical Journal. E, Soft Matter, 20(4), 401–408. doi: https://doi.org/10.1140/epje/i2006-10029-9
Schwendener, R. A., Ludewig, B., Cerny, A., y Engler, O. (2010). Liposome-based vaccines. Methods in Molecular Biology (Clifton, N.J.), 605, 163–175. doi: https://doi.org/10.1007/978-1-60327-360-2_11
Sou, K., Endo, T., Takeoka, S., y Tsuchida, E. (2000). Poly(ethylene glycol)-modification of the phospholipid vesicles by using the spontaneous incorporation of poly(ethylene glycol)-lipid into the vesicles. Bioconjugate Chemistry, 11(3), 372–379. doi: https://doi.org/10.1021/bc990135y
Uchegbu, I. F., Schätzlein, A. G., Cheng, W. P., y Lalatsa, A. (2013). Fundamentals of Pharmaceutical Nanoscience. Springer Science y Business Media. doi: https://doi.org/10.1007/978-1-4614-9164-4
van der Meel, R., Fens, M. H. A. M., Vader, P., van Solinge, W. W., Eniola-Adefeso, O., & Schiffelers, R. M. (2014). Extracellular vesicles as drug delivery systems: Lessons from the liposome field. Journal of Controlled Release, 195, 72–85. doi: https://doi.org/10.1016/j.jconrel.2014.07.049
Yang, D., Pornpattananangkul, D., Nakatsuji, T., Chan, M., Carson, D., Huang, C.-M., y Zhang, L. (2009). The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes. Biomaterials, 30(30), 6035–6040. doi: https://doi.org/10.1016/j.biomaterials.2009.07.033
Publicado
Número
Sección
Licencia
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
1. Los autores garantizan a la revista el derecho de ser la primera publicación del trabajo al igual que licenciado bajo una Creative Commons Attribution License que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en esta revista.
2. Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
3. Los autores han afirmado poseer todos los permisos para usar los recursos que utilizaron en el artículo (imágenes, tablas, entre otros) y asumen la responsabilidad total por daños a terceros.
4. Las opiniones expresadas en el artículo son responsabilidad de los autores y no necesariamente representan la opinión de los editores ni de la Universidad Nacional.
Revista Uniciencia y todas sus producciones se encuentran bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
No existe costo por acceso, revisión de propuestas ni publicación para autores y lectores.