La demostración matemática: significado, tipos, funciones atribuidas y relevancia en el conocimiento profesional de los profesores de matemáticas
DOI:
https://doi.org/10.15359/ru.33-2.5Palabras clave:
demostración matemática, formación de profesores de matemáticas, análisis conceptual, análisis didácticoResumen
El objetivo de esta investigación es realizar un estudio teórico sobre el significado de la demostración matemática, considerando tres elementos centrales: el concepto, los tipos de demostraciones matemáticas, así como sus funciones. La indagación es de tipo cualitativo de carácter descriptivo. El método empleado para la recolección y el análisis de la información es el análisis conceptual. Se consideraron cuatro fuentes de datos: diccionarios, libros de texto, investigaciones previas y el programa de estudios de matemáticas del Ministerio de Educación Pública de Costa Rica. La técnica de recolección de los datos requeridos fue la revisión bibliográfica. Se determinó que el concepto de demostración tiene diversos sentidos, dependiendo del contexto en el que se ubique; que los tipos de demostraciones matemáticas pueden clasificarse en dos categorías, directas e indirectas, y que existen diferentes funciones atribuidas a las demostraciones matemáticas, las cuales cobran relevancia, dependiendo del ámbito en donde se consideren. Se cree que los tres elementos anteriores deben formar parte del conocimiento especializado del profesor de matemáticas, para que promuevan el sentido de la demostración en los estudiantes de la educación secundaria.
Referencias
Alcolea, J. (2007). Razonamientos no rigurosos y demostraciones asistidas por ordenador. Contrastes. Revista Internacional de Filosofía, 12. doi: http://dx.doi.org/10.24310/Contrastescontrastes.v12i0.1432
Alvar, M. (1998). Diccionario ideológico de la lengua española. España, Barcelona: Bibliograf, S. A.
Balacheff, N. (2000). Procesos de prueba en los alumnos de matemáticas. Una empresa docente. Colombia, Bogotá: Editorial de la Universidad de los Andes. Recuperado de https://hal.archives-ouvertes.fr/hal-00520133/document
Bartle, R. y Sherbert, D. (2004). Introducción al análisis matemático de una variable. México, Ciudad de México: Editorial Limusa, S. A. de C. V.
Cabassut, R.; Conner, A.; İşçimen, F. A.; Furinghetti, F.; Jahnke, H. N. y Morselli, F. (2011). Conceptions of proof–In research and teaching. En Proof and proving in mathematics education (pp. 169-190). Dordrecht: Springer. Doi: https://doi.org/10.1007/978-94-007-2129-6_7
Chambadal, L. (1976). Diccionario de las matemáticas modernas. Francia, París: Larousse.
Comte-Sponville, A. (2005). Diccionario filosófico. España, Barcelona: Ediciones Paidós Ibérica, S. A.
Crespo, C. y Farfán, R. (2005). Una visión socioepistemológica de las argumentaciones en el aula. El caso de las demostraciones por reducción al absurdo. Revista Latinoamericana de Investigación en Matemática Educativa, 8(3), 287-317. Recuperado de http://www.redalyc.org/pdf/335/33508304.pdf
Crespo, C.; Farfán, R. y Lezama, J. (2009). Algunas características de las argumentaciones y la matemática en escenarios sin influencia aristotélica. Revista latinoamericana de investigación en matemática educativa, 12(1), 29-66.
Crespo, C.; Farfán, R. y Lezama, J. (2010). Argumentaciones y demostraciones: una visión de la influencia de los escenarios socioculturales. Revista latinoamericana de investigación en matemática educativa, 13(3), 283-306. Recuperado de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-24362010000300003
De Villiers, M. (1996). Future of secondary school geometry. Recuperado de http://mzone.mweb.co.za/residents/profmd/future.pdf
Diccionario ilustrado Océano de la lengua española. (1994). España, Barcelona: OCEANO.
Garrido, M. (1991). Lógica simbólica. España, Madrid: Editorial Tecnos.
Godino, J. D. y Recio, Á. M. (2001). Significados institucionales de la demostración. Implicaciones para la educación matemática. Enseñanza de las ciencias: revista de investigación y experiencias didácticas, 19(3), 405-414. Recuperado de http://www.raco.cat/index.php/Ensenanza/article/viewFile/21763/21597
Hanna, G. (1995). Challenges to the importance of proof. For the Learning of mathematics, 15(3), 42-49. Doi: https://doi.org/10.1007/0-306-47203-1_4
Hanna, G. (2002). Mathematical proof. En D. Tall (Ed.), Advanced mathematical thinking (pp. 54-61). Dordrecht: Springer. Doi https://doi.org/10.1007/978-94-007-2129-6_1
Hanna, G. (2014). The width of a proof. PNA, 9(1), 29-39. Recuperado de http://digibug.ugr.es/bitstream/10481/33232/1/Hanna2014PNA9(1)Thewidth.pdf
Hanna, G. y De Villiers, M. (2011). Aspects of proof in mathematics education. En G. Hanna y M. De Villiers (Eds.), Proof and Proving in Mathematics Education (pp. 1-10). Dordrecht: Springer. Recuperado de https://link.springer.com/chapter/10.1007/978-94-007-2129-6_1
Hernández-Sampieri, R.; Fernández, C. y Baptista, M. (2014). Metodología de la Investigación (6.a edición). México: McGRAW-HILL.
Homero, Á. (2007). Esquemas de argumentación en profesores de matemáticas del bachillerato. Educación Matemática, 19 (1), 63-98. Recuperado de http://www.redalyc.org/articulo.oa?id=40519104
Kleiner, I. (1991). Rigor and proof in mathematics: A historical perspective. Mathematics Magazine, 64(5), 291-314. Doi https://doi.org/10.1080/0025570X.1991.11977625
Knuth, E. J. (2002). Secondary school mathematics teachers’ conceptions of proof. Journal for research in mathematics education, 33(5), 379-405. Recuperado de https://www.jstor.org/stable/pdf/4149959.pdf?refreqid=excelsior%3A3130897e8847df8383552edfbe28c44e
Lakatos, I. (1978). Pruebas y refutaciones. La lógica del descubrimiento matemático. Madrid: Alianza Universidad.
Lin, F. L.; Yang, K. L.; Lo, J. J.; Tsamir, P.; Tirosh, D. y Stylianides, G. (2011). Teachers’ professional learning of teaching proof and proving. En G. Hanna y M. De Villiers (Eds.), Proof and proving in mathematics education (pp. 327-346). Dordrecht: Springer. Doi https://doi.org/10.1007/978-94-007-2129-6_14
Lo Cascio, V. (1998). Gramática de la argumentación: estrategias y estructuras. España, Madrid: Alianza Editorial, S. A.
Lucena, N. (2005). Diccionario esencial de Matemáticas. España, Barcelona: SPES Editorial, S. L.
Martí, I. (2003). Diccionario enciclopédico de educación. España, Barcelona: Grupo Editorial Ceac, S. A.
Ministerio de Educación Pública. (2012). Programas de estudio de matemáticas I, II y III ciclos de la educación general básica y ciclo diversificado. Costa Rica, San José: autor Recuperado de https://mep.go.cr/sites/default/files/programadeestudio/programas/matematica.pdf
Montoro, V. (2007). Concepciones de estudiantes de profesorado acerca del aprendizaje de la demostración. Revista electrónica de investigación en educación en ciencias, 2(1), 101-121. Recuperado de http://www.scielo.org.ar/scielo.php?pid=S1850-66662007000100006&script=sci_arttext&tlng=pt
Murillo, M. (2010). Introducción a la matemática discreta. Costa Rica, Cartago: Editorial Tecnológica de Costa Rica.
National Council of Teachers of Mathematics (NCTM). (2003). Principios y estándares para la educación matemática. Sevilla: Thales.
Patterson, C. (1950). Los principios del pensamiento correcto: lógica. Argentina, Buenos Aires: Editorial Americalee.
Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66(1), 23-41. Doi https://doi.org/10.1007/s10649-006-9057-x
Popper, K. (2000). La sociedad abierta y sus enemigos. Barcelona: Paidós.
Real Academia Española. (2006). Diccionario esencial de la lengua española. España, Madrid: Espasa Calpe. Recuperado de http://www.rae.es/
Rico, L. (2001). Análisis conceptual e investigación en Didáctica de la Matemática. España: Universidad de Granada. Recuperado de http://funes.uniandes.edu.co/523/1/RicoL01-2593.PDF
Rico, L. y Fernández-Cano, A. (2013). Análisis didáctico y metodología de investigación. En L. Rico., J. Lupiañez. y M. Molina (Eds.), Análisis Didáctico en Educación Matemática: metodología de investigación, formación de profesores e innovación curricular (pp.1-22). Granada: Comares, S. L.
Roberts, C. (2010). Introduction to mathematical proofs: a transition. USA, New York: Chapman y Hall/CRC.
Silva, J. (2002). Demonstração Matemática da Perspectiva da Lógica Matemática. BOLEMA: Boletim de Educação Matemática, 15, 68-78.
Stylianides, A. J. (2007). Proof and proving in school mathematics. Journal for research in Mathematics Education, 38(3), 289-321. Recuperado de http://www.jstor.org/stable/30034869?seq=1#page_scan_tab_contents
Toulmin, S. (1958). The use of arguments. Cambridge: University Press.
Valverde, L. (2012). Introducción al razonamiento lógico matemático. Costa Rica, San José: Editorial UCR.
Vega, L. (2012a). Compendio de lógica, argumentación y retórica. En L. Vega. y P. Olmos (Eds.), Argumentación (pp. 66-74). Madrid: Editorial Trotta, S. A.
Vega, L. (2012b). Compendio de lógica, argumentación y retórica. En L. Vega. y P. Olmos (Eds.), Demostración (pp. 182-184). Madrid: Editorial Trotta, S. A.
Vera, F. (1960). Matemática: lexicón kapelusz. Argentina, Buenos Aires: Editorial Kapeluz.
Publicado
Número
Sección
Licencia
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
1. Los autores garantizan a la revista el derecho de ser la primera publicación del trabajo al igual que licenciado bajo una Creative Commons Attribution License que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en esta revista.
2. Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
3. Los autores han afirmado poseer todos los permisos para usar los recursos que utilizaron en el artículo (imágenes, tablas, entre otros) y asumen la responsabilidad total por daños a terceros.
4. Las opiniones expresadas en el artículo son responsabilidad de los autores y no necesariamente representan la opinión de los editores ni de la Universidad Nacional.
Revista Uniciencia y todas sus producciones se encuentran bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
No existe costo por acceso, revisión de propuestas ni publicación para autores y lectores.