Competencias de profesores en formación en matemáticas al transformar las representaciones de una función
DOI:
https://doi.org/10.15359/ru.35-2.12Palabras clave:
profesores en formación, funciones, registros semióticos, significados parciales de las funciones, representaciones semióticas, educación matemáticaResumen
En este trabajo se tuvo como objetivo analizar las competencias de futuros profesores de pedagogía en enseñanza media en matemáticas, al hacer transformaciones de las representaciones de una función. La información se recogió en el segundo semestre de 2019 y se procesó utilizando la técnica análisis de contenido. Es un trabajo cualitativo, donde se interactuó con docentes en formación, mientras resolvían situaciones problema que involucraban funciones y preparaban una clase, que luego simulaban ante su grupo de clase y su docente. La muestra la constituyeron 36 sujetos estudiantes del profesorado en matemáticas de una universidad chilena. Los resultados muestran que lograron producir múltiples formas de representación de las relaciones funcionales analizadas, lo que facilitaba el análisis y establecimiento de conexiones con elementos del contexto sociocultural, pero una parte del grupo presentó dificultades con la fluidez perceptual, lo que impidió establecer conexiones entre ellas. Fueron modificando los significados parciales de la función, articuladamente, hasta ubicarse en uno de ellos, desde donde produjeron y articularon sus múltiples representaciones. Se concluye sobre la necesidad de implementar procesos de intervención que lleven a los futuros profesores a hacer análisis más integrales de las funciones, que le faciliten hacer un uso operativo de sus conocimientos, para minimizar las dificultades de aprendizaje en sus estudiantes.
Referencias
Adu-Gyamfi, K., & Bossé, M. (2014). Processes and reasoning in representations of linear functions. International Journal of Science and Mathematics Education, 12, 167-192. https://doi.org/10.1007/s10763-013-9416-x
Amaya, T. (2016). Evaluación de los conocimientos didáctico-matemáticos de futuros profesores de matemáticas al hacer transformaciones de las representaciones de una función [Tesis doctoral]. Universidad Nacional de Educación a Distancia, Madrid, España.
Amaya, T. (2020). Evaluación de la faceta epistémica del conocimiento didáctico- matemático de futuros profesores de matemáticas en el desarrollo de una clase utilizando funciones. Revista Bolema, 34(66), 110-131. https://doi.org/10.1590/1980-4415v34n66a06
Amaya, T., Pino-Fan, L., & Medina, A. (2016). Evaluación del conocimiento de futuros profesores de matemáticas sobre las transformaciones de las representaciones de una función. Revista Educación Matemática, 28(3), 111-144.
Arcavi, A. (2020). Learning to Look at the World Through Mathematical Spectacles A Personal Tribute to Realistic Mathematics Education. In M. Heuvel-Panhuizen (Ed.), International Reflections on the Netherlands Didactics of Mathematics Visions on and Experiences with Realistic Mathematics Education (pp. 83–95). Springer Open.
Ball, D., Thames, M., & Phelps, G. (2008). Content Knowledge for Teaching. What Makes It Special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/0022487108324554
Bernárdez, E. (1995). El papel del léxico en la organización textual. Universidad Complutense de Madrid.
Biehler, R. (2005). Reconstruction of Meaning as a Didactical Task: The Concept of Function as an Example. In J. Kilpatrick, C. Hoyles, O. Skovsmose & P. Valero (Eds.), Meaning in mathematics education (pp. 61-81). Springer. https://doi.org/10.1007/0-387-24040-3_5
Breda, A., Font, V., & Pino-Fan, L. (2018). Criterios valorativos y normativos en la didáctica de las matemáticas: El caso del constructo idoneidad didáctica. Bolema, 32(60), 255-278. http://dx.doi.org/10.1590/1980-4415v32n60a13.
Breda, A., Pino-Fan, L., & Font, V. (2017). Meta didactic-mathematical knowledge of teachers: criteria for the reflection and assessment on teaching practice. Eurasia Journal of Mathematics, Science & Technology Education, 13(6), 1893-1918. https://doi.org/10.12973/eurasia.2017.01207a
Deulofeu, J. (2001). Las funciones en la educación secundaria: ¿Para qué?, ¿cómo? aportaciones de la investigación. X Jornadas para la Enseñanza y el Aprendizaje de las Matemáticas, X JAEM, Zaragoza. Ponencia P41, 367-377. http://www.quadernsdigitals.net/datos/ hemeroteca/r_40/nr_458/a_6226/6226.pdf.
Dreher, A., & Kuntze, S. (2015). Teachers’ professional knowledge and noticing: The case of multiple representations in the mathematics classroom. Educational Studies in Mathematics, 88(1), 89–114. https://doi.org/10.1007/s10649-014-9577-8
Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61, 103–131. https://doi.org/10.1007/s10649-006-0400-z
Duval, R. (2017). Semiosis y pensamiento humano. Registros semióticos y aprendizajes intelectuales, (2da ed.). Universidad del Valle.
Elia, I., Gagatsis, A., & Demetriou, A. (2007). The effects of different modes of representation on the solution of one-step additive problems. Learning and Instruction, 17, 658-672. https://doi.org/10.1016/j.learninstruc.2007.09.011
Even, R. (1990). Subject-Matter Knowledge for Teaching and the case of functions. Educational Studies in Mathematics, 21, 521-544. https://doi.org/10.1007/BF00315943
Even, R. (1993). Subject-matter knowledge and pedagogical content knowledge: prospective secondary teachers and the function concept. Journal for Research in Mathematics Education, 24(2), 94-116. https://doi.org/10.5951/jresematheduc.24.2.0094
Font, V. (2011). Las funciones y la competencia disciplinar en la formación docente matemática. UNO. Revista de Didáctica de las Matemáticas, 56, 86-94.
Gagatsis, A., & Shiakalli, M. (2004). Ability to translate from one representation of the concept of function to another and mathematical problem solving. Educational Psychology, 24(5), 645-657. https://doi.org/10.1080/0144341042000262953
Godino, J., & Batanero, C. (1994). Significado institucional y personal de los objetos matemáticos. Recherches en Didactique des Mathématiques, 14(3), 325-355.
Godino, J., Giacomone, B., Font, V., & Pino-Fan, L. (2018). Conocimientos profesionales en el diseño y gestión de una clase sobre semejanza de triángulos. Análisis con herramientas del modelo CCDM. Avances de Investigación en Educación Matemática, 13, 63-83. https://doi.org/10.35763/aiem.v0i13
Heuvel-Panhuizen, M. (2020). Seen Through Other Eyes Opening Up New Vistas in Realistic Mathematics Education Through Visions and Experiences from Other Countries. In M. Heuvel-Panhuizen (Ed.), International Reflections on the Netherlands Didactics of Mathematics Visions on and Experiences with Realistic Mathematics Education, (pp. 1–20). Springer Open. https://doi.org/10.1007/978-3-030-20223-1_1
Hitt, F. (1998). Difficulties in the Articulation of Different Representations Linked to the Concept of Function. Journal of mathematical behavior, 17(1), 123-134. https://doi.org/10.1016/S0732-3123(99)80064-9
Kaput, J. (1987). Representation systems and mathematics. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 19–26). Hillsdale, NJ: Lawrence Erlbaum Associates.
Kaur, B., Wong, L. & Govindani, S. (2020). Graphing Linear Equations-A Comparison of the Opportunity-to-Learn in Textbooks Using the Singapore and the Dutch Approaches to Teaching Equations. In M. HeuveL-Panhuizen (Ed.), International Reflections on the Netherlands Didactics of Mathematics Visions on and Experiences with Realistic Mathematics Education (pp. 97–111). Springer Open. https://doi.org/10.1007/978-3-030-20223-1_7
Kurnaz, M., & Bayri, N. (2018). The Analysis of Secondary School Students’ Transition Situations in Multiple Representations. Science Education International, 29(1), 3-10.
Maz, A. (2005). Los números negativos en España en los siglos XVIII y XIX [Tesis doctoral]. Universidad de Granada, Granada, España.
Ministerio de Educación. (2019). Texto definitivo bases curriculares 3° y 4° medio. Plan de Formación General Plan de Formación Diferenciada Humanístico-Científico. Ministerio de educación.
Mora, G., Riquelme, L., Troncoso, J., & Escobar, B. (2018). Validación de una matriz para evaluar monografías en estudiantes universitarios. Formación Universitaria, 11(1), 63-76. http://dx.doi.org/10.4067/S0718-50062018000100063.
Niss, M. & Højgaard, T. (2019). Mathematical competencies revisited. Educational Studies in Mathematics, 102(1), 9-28. https://doi.org/10.1007/s10649-019-09903-9.
Nonaka, I., & Toyama, R. (2015). The knowledge-creating theory revisited: knowledge creation as a synthesizing process. In J. S. Edwards (Eds.), The Essentials of Knowledge Management (pp. 2-10). OR Essentials Series. Palgrave Macmillan. https://doi.org/10.1057/9781137552105_4
Pino-Fan, L., & Godino, J. (2015). Perspectiva ampliada del conocimiento didáctico-matemático del profesor. Paradigma, 36(1), 87-109.
Pino-Fan, L., Font, V., & Breda, A. (2017). Mathematics teachers' knowledge and competences model based on the onto-semiotic approach. In B. Kaur, W. K. Ho, T. L. Toh & B. H. Choy (Eds.), Proceedings of the 41st Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 33-40). PME.
Pino-Fan, L., Parra-Urrea, Y., & Castro, W. (2019). Significados de la función pretendidos por el currículo de matemáticas chileno. Magis, Revista Internacional de Investigación en Educación, 11(23), 201-220. 10.11144/Javeriana.m11-23.sfpc
Rau, M., Rummel, N., & Aleven, V. (2017). Making connections among multiple graphical representations of fractions: sense-making competencies enhance perceptual fluency, but not vice versa. Instructional Science, 45(3), 331-357. https://doi.org/10.1007/s11251-017-9403-7
Rey, G.; Boubée, C., Sastre, P., & Cañibano, A. (2009). Ideas para enseñar. Aportes didácticos para abordar el concepto de función. Revista iberoamericana de educación matemática, 20, 153-162.
Rosa, M., & Orey, D. (2011). Ethnomathematics: the cultural aspects of mathematics. Revista Latinoamericana de Etnomatemática, 4(2). 32-54.
Sastre, P.; Rey, G., & Boubée, C. (2008). El concepto de función a través de la historia. Revista Iberoamericana de Educación Matemática, 16, 141-155.
Scherer, P. (2020). Low Achievers in Mathematics Ideas from the Netherlands for Developing a Competence-Oriented View. In M. Heuvel-Panhuizen (Ed.), International Reflections on the Netherlands Didactics of Mathematics Visions on and Experiences with Realistic Mathematics Education (pp. 113–132). Springer Open.
Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics. In D. Grouws (Ed.), Handbook for Research on Mathematics Teaching and Learning (pp. 334-370). MacMillan.
Schoenfeld, A., & Kilpatrick, J. (2008). Towards a theory of proficiency in teaching mathematics. In D. TIROSH, T. WOOD (Ed.), Tools and Processes in Mathematics Teacher Education (321-354). Sense Publishers. https://doi.org/10.1163/9789087905460_016
Siegler, R., Carpenter, T., Fennell, F., Geary, D., Lewis, J., Okamoto, Y., … Wray, J. (2010). Developing effective fractions instruction: A practice guide. National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education. https://doi.org/10.1007/978-3-030-20223-1_8
Wills, T., Shipley, T., Chang, B., Cromley, J., & Booth, J. (2014). What Gaze Data Reveal About Coordinating Multiple Mathematical Representation. Journal Proceedings of the Annual Meeting of the Cognitive Science Society, 36(36), 312-3118.
Publicado
Número
Sección
Licencia
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
1. Los autores garantizan a la revista el derecho de ser la primera publicación del trabajo al igual que licenciado bajo una Creative Commons Attribution License que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en esta revista.
2. Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
3. Los autores han afirmado poseer todos los permisos para usar los recursos que utilizaron en el artículo (imágenes, tablas, entre otros) y asumen la responsabilidad total por daños a terceros.
4. Las opiniones expresadas en el artículo son responsabilidad de los autores y no necesariamente representan la opinión de los editores ni de la Universidad Nacional.
Revista Uniciencia y todas sus producciones se encuentran bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
No existe costo por acceso, revisión de propuestas ni publicación para autores y lectores.