Estructuras en las formas directa e inversa de una función por estudiantes de 7-8 años

Autores/as

DOI:

https://doi.org/10.15359/ru.35-2.16

Palabras clave:

Estructura, forma directa de una función, forma inversa de una función, generalización, pensamiento funcional

Resumen

El objetivo de este estudio ha sido identificar y comparar las estructuras que evidencian los estudiantes de educación primaria en las formas directa e inversa de una función, tanto para el trabajo con casos particulares como en la generalización desde un enfoque funcional del early algebra. El estudio que se lleva a cabo es de tipo cualitativo y de carácter exploratorio y descriptivo. Se diseña una tarea contextualizada que involucra la función lineal y=x+4, en sus formas directa e inversa. Los seis estudiantes participantes de este estudio de educación primaria (7-8 años) trabajaron la tarea durante entrevistas semiestructuradas que se desarrollaron en el curso académico 2017/2018. Los estudiantes proceden de un colegio de Granada (España). Se describen las estructuras evidenciadas en ambas formas de la función y tanto en el trabajo con casos particulares como cuando se les pregunta por el caso general. Los seis estudiantes identificaron estructuras adecuadas de la forma directa de la función en al menos una ocasión durante la entrevista. En la forma inversa se observaron estructuras también adecuadas, pero hubo estudiantes que no respondieron o a los que no se les hicieron preguntas de esta parte. La mayoría de las estructuras generalizadas se evidenciaron al preguntarles explícitamente por la generalización tanto en la forma directa como en la forma inversa de la función. Al trabajar con la relación entre dos variables se identificaron diferencias entre las estructuras identificadas por el estudiantado en ambas formas de una función: directa e inversa. La mayor parte de las estructuras identificadas fueron adecuadas al problema y esto anima al trabajo con ambas formas de las funciones lineales en educación primaria.

Referencias

Bednarz, N., Kieran, C. y Lee, L. (1996). Approaches to algebra: Perspectives for research and teaching. Kluwer. https://doi.org/10.1007/978-94-009-1732-3

Blanton, M. L. (2008). Algebra and the elementary classroom: Transforming thinking, transforming practice. Heinemann.

Blanton, M. y Kaput, J. (2004). Elementary grades students’ capacity for functional thinking. En M. Hoines y A. Fuglestad (Eds.), Proceedings of the 28th International Conference for the Psychology of Mathematics Education (Vol. 2, pp. 135-142). Bergen University College.

Blanton, M., Brizuela, B. M., Gardiner, A., Sawrey, K. y Newman-Owens, A. (2015). A learning trajectory in 6-year-olds’ thinking about generalizing functional relationships. Journal for Research in Mathematics Education, 46(5), 511-558. https://doi.org/10.5951/jresematheduc.46.5.0511

Blanton, M., Levi, L., Crites, T. y Dougherty, B. (2011). Developing essential understanding of algebraic thinking for teaching mathematics in Grades 3-5. NCTM.

Cañadas M. C. y Fuentes, S. (2015). Pensamiento funcional de estudiantes de primero de educación primaria: un estudio exploratorio. Investigación en educación matemática XIX (pp. 211-220). SEIEM.

Cañadas, M. C. y Castro, E. (2007). A proposal of categorisation for analysing inductive reasoning. PNA, 1(2), 67-78.

Cañadas, M. C. y Molina, M. (2016). Una aproximación al marco conceptual y principales antecedentes del pensamiento funcional en las primeras edades. En E. Castro, E. Castro, J. L. Lupiáñez, J. F. Ruíz y M. Torralbo (Eds.), Investigación en Educación Matemática. Homenaje a Luis Rico (pp. 209-218). Comares.

Carraher, D. W. y Schliemann, A. (2016). Powerful ideas in elementary school mathematics. En L. English y D. Kirshner (Eds.), Handbook of international research in mathematics education. Third edition (pp. 191-218). Routledge.

Carraher, D. W., Martínez, M. V. y Schliemann, A. D. (2008). Early algebra and mathematical generalization. ZDM, 40(1), 3-22. https://doi.org/10.1007/s11858-007-0067-7

Castellanos, M. T., Flores, P. y Moreno, A. (2018). Reflexión en el prácticum: Un experimento de enseñanza con estudiantes colombianos. Profesorado, Revista de Currículum y Formación del Profesorado, 22(1), 429-455. https://revistaseug.ugr.es/index.php/profesorado/article/view/9935

Driscoll, M. J. (1999). Fostering algebraic thinking: A guide for teachers, Grades 6-10. Heinemann.

Ellis, A. B. (2007). A taxonomy for categorizing generalizations: Generalizing actions and reflection generalizations. The Journal of the Learning Sciences, 16, 221-262. https://doi.org/10.1080/10508400701193705

Filloy, E., Puig, L. y Rojano, T. (2008). Educational algebra. A theoretical and empirical approach. Springer. https://doi.org/10.1007/978-0-387-71254-3

Kaput, J. (2000). Transforming algebra from an engine of inequity to an engine of mathematical power by “algebrafying” the K-12 curriculum. National Center for Improving Student Learning and Achievement in Mathematics and Science.

Kaput, J. J., Blanton, M. J. y Moreno, L. (2008). Algebra from a symbolization point of view. En J. J. Kaput, D. W. Carraher y M. L. Blanton (Eds.), Algebra in the early grades (pp. 19-55). Lawrence Erlbaum Associates. https://doi.org/10.4324/9781315097435-3

Kieran, C. (2004). Algebraic thinking in the early grades: What is it? The Mathematics Educator, 18(1), 139-151.

Mason, J. (1996). Expressing generality and roots of algebra. En N. Bednarz, C. Kieran y L. Lee (Eds.), Approaches to algebra: Perspectives for research and teaching (pp. 65-86). Kluwer. https://doi.org/10.1007/978-94-009-1732-3_5

Merino, E., Cañadas, M. C y Molina, M. (2013). Uso de representaciones y patrones por alumnos de quinto de educación primaria en una tarea de generalización. Edma 0-6: Educación Matemática en la Infancia, 2(1), 24-40.

Molina, M. (2006). Desarrollo de pensamiento relacional y comprensión del signo igual por alumnos de tercero de educación primaria [Tesis doctoral]. Universidad de Granada, Granada.

Molina, M., Castro, E., Molina, J. L. y Castro, E. (2011). Un acercamiento a la investigación de diseño a través de los experimentos de enseñanza. Enseñanza de las Ciencias, 29(1), 75-88. https://doi.org/10.5565/rev/ec/v29n1.435

Morales, R., Cañadas, M. C., Brizuela, B. M. y Gómez, P. (2018). Relaciones funcionales y estrategias de alumnos de primero de Educación Primaria en un contexto funcional. Enseñanza de las Ciencias, 36(3), 59-78. https://doi.org/10.5565/rev/ensciencias.2472

Mulligan, J. y Mitchelmore, M. (2009). Awareness of pattern and structure in early mathematical development. Mathematics Education Research Journal, 21(2), 33-49. https://doi.org/10.1007/BF03217544

Pinto, E. y Cañadas, M. C. (2017a). Generalization in fifth graders within a functional approach. En B. Kaur, W. K. Ho, T. L. Toh y B. H. Choy (Eds.), Proceedings of the 41st Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 49-56). PME.

Pinto, E. y Cañadas, M. C. (2017b). Functional thinking and generalization in third year of primary school. En B. Kaur, W. K. Ho, T. L. Toh y B. H. Choy (Eds.), Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education (pp. 472-479). DCU Institute of Education and Erme.

Pólya, G. (1945). How to solve it. University Press. (Traducción al castellano: J. Zugazagoitia, 1965. Cómo plantear y reslover problemas. Trillas). https://doi.org/10.1515/9781400828678

Pólya, G. (1966). Matemáticas y razonamiento plausible. Tecnos

Radford, L. (1997). L’invention d’une idée mathématique: la deuxième inconnue en algèbre, Repères (Revue des instituts de Recherche sur l’enseignement des Mathématiques de France), juillet, 28, 81-96.

Radford, L. (2010). Layers of generality and types of generalization in pattern activities. PNA, 4(2), 37-62.

Radford, L. (2018). The emergence of symbolic algebraic thinking in primary school. En C. Kieran (Ed.), Teaching and learning algebraic thinking with 5-to 12- year-olds: The global evolution of an emerging field of research and practice. Springer. https://doi.org/10.1007/978-3-319-68351-5_1

Thompson, P. W. (1994). Students, functions, and the undergraduate curriculum. En E. Dubinsky, A. H. Schoenfeld y J. J. Kaput (Eds.), Research in collegiate Mathematics Education (Vol. 4, pp. 21-44). American Mathematical Society.

Torres, M. D., Cañadas, M. C. y Moreno, A. (2018). Estructuras, generalización y significado de letras en un contexto funcional por estudiantes de 2º de primaria. En L. J. Rodríguez-Muñiz, L. Muñiz- Rodríguez, A. Aguilar-González, P. Alonso, F. J. García García y A. Bruno (Eds.), Investigación en Educación Matemática XXII (pp. 574-583). SEIEM.

Torres, M. D., Cañadas, M. C. y Moreno, A. (2019). Estructuras y representaciones de alumnos de 2º de primaria en una aproximación funcional del pensamiento algebraico. En J. M. Marbán, M. Arce, A. Maroto, J. M. Muñoz-Escolano y Á. Alsina (Eds.), Investigación en educación matemática XXIII (pp. 573-582). SEIEM.

Vergel, R. (2014). Formas de pensamiento algebraico temprano en alumnos de cuarto y quinto grados de educación básica primaria (9-10 años) [Tesis doctoral]. Universidad Distrital Francisco José de Caldas.

Vergel, R. (2015). Generalización de patrones y formas de pensamiento algebraico temprano. PNA, 9(3), 193-215.

Warren, E. y Cooper, T. (2005). Introducing functional thinking in Year 2: A case study of early algebra teaching. Contemporary Issues in Early Childhood, 6(2), 150-162. https://doi.org/10.2304/ciec.2005.6.2.5

Warren, E., Miller, J y Cooper, T. J. (2013). Exploring young students’ functional thinking. PNA, 7(2), 75-84.

Publicado

2021-07-31

Número

Sección

Artículos científicos originales (arbitrados por pares académicos)

Comentarios (ver términos de uso)

Artículos más leídos del mismo autor/a

<< < 34 35 36 37 38 39 40 41 42 43 > >>