Origen de las variaciones de color de las escorias del volcán Sierra Negra de las Islas Galápagos

Autores/as

DOI:

https://doi.org/10.15359/ru.35-2.14

Palabras clave:

Ceniza, Galápagos, interferencia óptica, capas de tamaño nano, velocidad de cristalización, vulcanología, difracción

Resumen

Las cenizas volcánicas, también conocidas como escorias, son una roca ígnea extrusiva que se forma cuando los magmas ricos en gas de composición basáltica o andesítica se enfrían rápidamente. Es típicamente de color oscuro, que va del negro al rojo dependiendo de su composición química. A veces las muestras de ceniza fresca muestran una variedad de colores metálicos brillantes en su superficie que van del azul al oro y a la plata, dependiendo de la orientación de la muestra. Hasta ahora, el origen de estos colores ha permanecido desconocido. Muestras de cenizas de un evento eruptivo ocurrido en octubre de 2005, han sido recogidas en los alrededores del volcán Sierra Negra en las Islas Galápagos. La estructura cristalográfica, la composición química y la morfología de la superficie de estas muestras se han analizado utilizando la difracción de rayos X (XRD), la espectroscopia de rayos X de dispersión de energía (EDS) y la microscopia electrónica de barrido con emisión de campo (SEM), respectivamente. Basándonos en un extenso análisis físico y químico, hemos podido demostrar que estos colores se deben a un fenómeno de interferencia de la luz. Estos resultados tienen un gran potencial para ser utilizados para una amplia variedad de propósitos como la determinación de la temperatura y la composición del magma, así como la evaluación de muestras volcánicas para estudios planetarios.

Referencias

Abe, T.; Ohki, M.; & Tadono, T. (2019). Surface Changes Due to the 2018 Eruption of Sierra Negra Volcano in Galápagos Island Revealed by ALOS-2/PALSAR-2. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium (pp. 9334-9337). IEEE. https://doi.org/10.1109/IGARSS.2019.8900424

Amelung, F.; Jónsson, S.; Zebker, H.; & Segall, P. (2000). Widespread uplift and 'trapdoor' faulting on Galapagos volcanoes observed with radar interferometry: Nature, 407: 993-996. https://doi.org/10.1038/35039604

Arroyo, C. R.; Debut, A.; Vaca, A. V.; Stael, C.; Guzman, K.; & Cumbal, L. (2016). Reliable Tools for Quantifying the Morphogical Properties at the Nanoscale. Biology and Medicine, 8(3), 1. https://doi.org/10.4172/0974-8369.1000281

Brož, P.; & Hauber, E. (2012). A unique volcanic field in Tharsis, Mars: Pyroclastic cones as evidence for explosive eruptions. Icarus, 218(1), 88-99. https://doi.org/10.1016/j.icarus.2011.11.030

Cashman, K. V.; Sturtevant, B.; Papale, P., & Navon, O. (2000). Magmatic fragmentation. In: Sigurdsson, H., Houghton, B.F., McNutt, S.R., Rymer, H., Stix, J. (Eds.), Encyclopedia of Volcanoes. Academic Press, San Diego, pp. 421-430.

Chadwick, W.W.; Geist, D. J.; Johnsson, S.; Poland, M.; & Johnson, D. J. (2006). A volcano bursting at the seams: inflation, faulting, and eruption at Sierra Negra Volcano, Galápagos. Geology, 34, 1025-1028. https://doi.org/10.1130/G22826A.1

Chadwick, W.W.; & Howard, K. A. (1991). The pattern of circumferential and radial eruptive fissures on the volcanoes of Fernandina and Isabela islands, Galápagos, Bull. Volcanol., 53, 259-275. https://doi.org/10.1007/BF00414523

Colgate, S. A.; & Sigurgeirsson, T. (1973). Dynamic mixing of water and lava. Nature, 244, 552-555. https://doi.org/10.1038/244552a0

Daenen M.; Williams O. A.; D'Haen J.; Haenen K.; & Nesládek M., (2006). Seeding, growth and characterization of nanocrystalline diamond films on various substrates. Phys. stat. sol, 203(12), 3005-3010. https://doi.org/10.1002/pssa.200671122

Delaney, J. R.; Colony, W. E.; Gerlach, T. M; & Nordlie, B. E. (1973). Geology of the Volcan Chico area on Sierra Negra volcano, Galapagos Islands. Geol Soc Am Bull, 84, 2455-2470. https://doi.org/10.1130/0016-7606(1973)84<2455:GOTVCA>2.0.CO;2

Filiberto, J. (2017). Geochemistry of Martian basalts with constraints on magma genesis. Chemical Geology, 466, 1-14. https://doi.org/10.1016/j.chemgeo.2017.06.009

Fisher, R. V.; & Schmincke, H. U. (1984). ‘‘Pyroclastic Rocks’’. Springer-Verlag, Berlin/New York: pp. 472. https://doi.org/10.1007/978-3-642-74864-6

Fisher, R. V.; Heiken, G.; & Hulen, J. B. (1997). Volcanoes. Crucibles of Change. Princeton Univ. Press, Princeton, NJ.

Geist, D.J.; Chadwick, W.W. Jr.; & Johnson, D. J. (2006). Results from new GPS monitoring networks at Fernandina and Sierra Negra volcanoes, Galapagos, 2000-2002: Journal of Volcanology and Geothermal Research, 150, 79-97. https://doi.org/10.1016/j.jvolgeores.2005.07.003

Geist, E. L.; Childs, J. R.; & Scholl, D. W. (1988). The origin of summit basins of the Aleutian Ridge: Implications for block rotation of an arc massif. Tectonics, 7(2), 327-341. https://doi.org/10.1029/TC007i002p00327

Geist, D. J.; Harpp, K. S.; Naumann, T. R.; Poland, M.; Chadwick, W. W.; Hall, M.; & Rader, E. (2008). The 2005 eruption of Sierra Negra volcano, Galápagos, Ecuador. Bulletin of Volcanology, 70(6), 655-673. https://doi.org/10.1007/s00445-007-0160-3

Ghail, R. C.; & Wilson, L. (2015). A pyroclastic flow deposit on Venus. Geological Society, London, Special Publications, 401(1), 97-106. https://doi.org/10.1144/SP401.1

Ghent, R. R.; Anderson, S. W.; & Pithawala, T. M. (2012). The formation of small cones in Isidis Planitia, Mars through mobilization of pyroclastic surge deposits. Icarus, 217(1), 169-183. https://doi.org/10.1016/j.icarus.2011.10.018

Global Volcanism Program (2015). Report on Wolf (Ecuador). In: Sennert, S.K. (ed.), Weekley Volcanic Activity Report, 20 May-26 May 2015. Smithsonian Institution and US Geological Survey

Goff, F.; & McMurtry, G.M. (2000). Tritium and stable isotopes of magmatic waters. Journal of Volcanology and Geothermal Research, 97, 347-396. https://doi.org/10.1016/S0377-0273(99)00177-8

Goff, F.; McMurtry, G.M.; Counce, D.; Simac, J.A.; Roldan-Manzo, A.R.; & Hilton, D.R. (2000). Contrasting hydrothermal activity at Sierra Negra and Alcedo volcanoes, Galapagos Archipelago, Ecuador. Bull Volcanol, 62, 34-52. https://doi.org/10.1007/s004450050289

Goldstein J. I.; Newbury D. E.; Echlin P.; Joy D. C.; Romig A. D.; Lyman C. E.; Fiori C.; & Lifshin E. (1992). Scanning Electron Microscopy and X-Ray Microanalysis. A text book for Biologists, Materials Scientists, and Geologists. Springer-Verlag: Boston. https://doi.org/10.1007/978-1-4613-0491-3

Gregg, T. K.; & Farley, M. A. (2006). Mafic pyroclastic flows at Tyrrhena Patera, Mars: Constraints from observations and models. Journal of volcanology and geothermal research, 155(1-2), 81-89. https://doi.org/10.1016/j.jvolgeores.2006.02.008

Gulick, V. C.; & Baker, V. R. (1990). Origin and evolution of valleys on Martian volcanoes. Journal of Geophysical Research: Solid Earth, 95(B9), 14325-14344. https://doi.org/10.1029/JB095iB09p14325

Harpp, K. S.; & White, W. M. (2001). Tracing a mantle plume: Isotopic and trace element variations of Galápagos seamounts. Geochemistry, Geophysics, Geosystems, 2(6). https://doi.org/10.1029/2000GC000137

Heiken, G. (1972). Morphology and petrography of volcanic ashes. Geological Society of America Bulletin, 83(7), 1961-1988. https://doi.org/10.1130/0016-7606(1972)83[1961:MAPOVA]2.0.CO;2

Hey, R. (1977). Tectonic evolution of the Cocos-Nazca spreading center. Geological Society of America Bulletin, 88, 1404-1420. https://doi.org/10.1130/0016-7606(1977)88<1404:TEOTCS>2.0.CO;2

Holden, J. C.; & Dietz, R. S. (1972). Galápagos Gore, NazCoPac Triple Junction and Carnegie/Cocos Ridges. Nature, 100, 266-269. https://doi.org/10.1038/235266a0

Hynek, B. M.; McCollom, T. M.; Marcucci, E. C.; Brugman, K.; & Rogers, K. L. (2013). Assessment of environmental controls on acid‐sulfate alteration at active volcanoes in Nicaragua: Applications to relic hydrothermal systems on Mars. Journal of Geophysical Research: Planets, 118(10), 2083-2104. https://doi.org/10.1002/jgre.20140

Jakosky, B. M.; & Phillips, R. J. (2001). Mars' volatile and climate history. Nature, 412(6843), 237. https://doi.org/10.1038/35084184

Jonsson, S; Zebker, H; & Amelung, F. (2005). On trapdoor faulting at Sierra Negra volcano, Galapagos. J Volcanol Geotherm Res, 144, 59-71. https://doi.org/10.1016/j.jvolgeores.2004.11.029

Jordá-Bordehore, L.; & Toulkeridis, T. (2016). Stability assessment of volcanic natural caves - Lava tunnels - Using both empirical and numerical approach, case studies of galapagos islands (Ecuador) and lanzarote Island (Canary - Spain). Rock Mechanics and Rock Engineering: From the Past to the Future. International Symposium on International Society for Rock Mechanics, ISRM 2016; Cappadocia; Turkey, 2, 835-840.

Jordá-Bordehore, L.; Toulkeridis, T.; Romero-Crespo, P.L.; Jordá-Bordehore, R.; & García- Gariazabal, I. (2016). Stability assessment of volcanic lava tubes in the Galápagos using engineering rock mass classifications and by empirical approach. International Journal of Rock Mechanics & Mining Sciences, 89, 55-67. https://doi.org/10.1016/j.ijrmms.2016.08.005

Kerber, L.; Head, J. W.; Madeleine, J. B.; Forget, F.; & Wilson, L. (2011). The dispersal of pyroclasts from Apollinaris Patera, Mars: Implications for the origin of the Medusae Fossae Formation. Icarus, 216(1), 212-220. https://doi.org/10.1016/j.icarus.2011.07.035

Kerber, L.; Head, J. W.; Madeleine, J. B.; Forget, F.; & Wilson, L. (2012). The dispersal of pyroclasts from ancient explosive volcanoes on Mars: Implications for the friable layered deposits. Icarus, 219(1), 358-381. https://doi.org/10.1016/j.icarus.2012.03.016

Keszthelyi, L. (1995). A preliminary thermal budget for lava tubes on the Earth and planets. Journal of Geophysical Research: Solid Earth, 100(B10), 20411-20420. https://doi.org/10.1029/95JB01965

Keszthelyi, L.; Self, S.; & Thordarson, T. (2006). Flood lavas on earth, Io and Mars. Journal of the geological society, 163(2), 253-264. https://doi.org/10.1144/0016-764904-503

Knittl, Z. (1976). Optics of thin films: an optical multilayer theory (p. 548) London: Wiley.

Kurz, M. D.; & Geist, D. (1999). Dynamics of the Galapagos hotspot from helium isotope geochemistry. Geochimica et Cosmochimica Acta, 63(23), 4139-4156. https://doi.org/10.1016/S0016-7037(99)00314-2

Léveillé, R. J.; & Datta, S. (2010). Lava tubes and basaltic caves as astrobiological targets on Earth and Mars: a review. Planetary and Space Science, 58(4), 592-598. https://doi.org/10.1016/j.pss.2009.06.004

Lorenz, V. (1986). On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull. Volcanol, 48, 265-274. https://doi.org/10.1007/BF01081755

Mangan, M. T.; & Cashman, K. V. (1996). The structure of basaltic scoria and reticulite and inferences for vesiculation, foam formation, and fragmentation in lava fountains. Journal of Volcanology and Geothermal Research, 73(1), 1-18. https://doi.org/10.1016/0377-0273(96)00018-2

McBirney, A. R.; & Williams, H. (1969). Geology and petrology of the Galápagos Islands: Geological Society of America Memoir 118. https://doi.org/10.1130/MEM118-p1

McCanta, M. C.; Dyar, M. D.; & Treiman, A. H. (2014). Alteration of Hawaiian basalts under sulfur-rich conditions: Applications to understanding surface-atmosphere interactions on Mars and Venus. American Mineralogist, 99(2-3), 291-302. https://doi.org/10.2138/am.2014.4584

Morris, R. V.; Golden, D. C.; Bell, J. F.; Shelfer, T. D.; Scheinost, A. C.; Hinman, N. W.; Furniss, G.; Mertzman, S.A.; Bishop, J.L.; Ming, D.W.; Allen, C.C.; & Britt, D.T. (2000). Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples. Journal of Geophysical Research: Planets, 105(E1), 1757-1817. https://doi.org/10.1029/1999JE001059

Moune, S.; Faure, F.; Gauthier, P. J.; & Sims, K. W. (2007). Pele's hairs and tears: natural probe of volcanic plume. Journal of volcanology and geothermal research, 164(4), 244-253. https://doi.org/10.1016/j.jvolgeores.2007.05.007

Munro, D. C.; & Rowland, S. K. (1996). Caldera morphology in the western Galapagos and implications for volcano eruptive behavior and mechanisms of caldera formation. Journal of Volcanology and Geothermal Research, 72(1-2), 85-100. https://doi.org/10.1016/0377-0273(95)00076-3

Padrón, E.; Hernández, P.A.; Pérez, N.M.; Toulkeridis, T.; Melián, G.; Barrancos, J.; Virgili, G.; Sumino H.; & Notsu, K. (2012) Fumarole/plume and diffuse CO2 emission from Sierra Negra volcano, Galapagos archipelago. Bull. Of Volcanol., 74, 1509-1519. https://doi.org/10.1007/s00445-012-0610-4

Parfitt, E. A. (1998). A study of clast size distribution, ash deposition and fragmentation in a Hawaiian-style volcanic eruption. Journal of Volcanology and Geothermal Research, 84(3), 197-208. https://doi.org/10.1016/S0377-0273(98)00042-0

Peterson, D. W. (1979). Significance of the flattening of pumice fragments in ash-flow tuffs. Geological Society of America Special Papers, 180, 195-204. https://doi.org/10.1130/SPE180-p195

Poulet, F.; Bibring, J. P.; Mustard, J. F.; & Gendrin, A. (2005). Phyllosilicates on Mars and implications for early Martian climate. Nature, 438(7068), 623. https://doi.org/10.1038/nature04274

Reynolds, R.W.; Geist, D.; & Kurz, M.D. (1995). Physical volcanology and structural development of Sierra Negra volcano, Isabela Island, Galapagos Archipelago. Geol Soc Am Bull, 107, 1398-1410. https://doi.org/10.1130/0016-7606(1995)107<1398:PVASDO>2.3.CO;2

Reynolds, R.W.; & Geist, D.J. (1995). Petrology of lavas from Sierra Negra volcano, Isabela Island, Galapagos Archipelago. J Geophys Res, 100(24), 537-524,553. https://doi.org/10.1029/95JB02809

Sánchez-Polo, A.; Briceño, S.; Jamett, A.; Galeas, S.; Campaña, O.; Guerrero, V.; Arroyo, C.R.; Debut, A.; Mowbray, D.J.; Zamora-Ledezma, C.; Serrano, J. (2019). An Archaeometric Characterization of Ecuadorian Pottery. Sci Rep, 9, 2642. https://doi.org/10.1038/s41598-018-38293-w

Schmid, R. (1981). Descriptive nomenclature and classification of pyroclastic deposits and fragments: Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks. Geology, 9(1), 41-43. https://doi.org/10.1130/0091-7613(1981)9<41:DNACOP>2.0.CO;2

Simkin, T. (1984). Geology of Galapagos Islands. In: Perry R (ed) Galapagos. Pergamon Press, Oxford, pp 15-41

Simkin, T.; & Siebert, L. (1994). Volcanoes of the World: A Regional Directory, Gazetteer, and Chronology of Volcanism During the Last 10,000 Years. 349 pp. Geosci. Press, Tucson, Ariz.

Spieler, O.; Kennedy, B.; Kueppers, U.; Dingwell, D. B.; Scheu, B.; & Taddeucci, J. (2004). The fragmentation threshold of pyroclastic rocks. Earth and Planetary Science Letters, 226(1), 139-148. https://doi.org/10.1016/j.epsl.2004.07.016

Squyres, S. W.; Aharonson, O.; Clark, B. C.; Cohen, B. A.; Crumpler, L.; De Souza, P. A.; & Haldemann, A. F. C. (2007). Pyroclastic activity at home plate in Gusev Crater, Mars. Science, 316(5825), 738-742. https://doi.org/10.1126/science.1139045

Squyres, S. W.; Aharonson, O.; Clark, B. C.; Cohen, B. A.; Crumpler, L.; De Souza, P. A.; Farrand, W.H.; Gellert, R.; Grant, J.; Grotzinger, J.P.; Haldemann, A.F.C.; Johnson, J.R.; Klingelhöfer, G.; Lewis, K.W.; Li, R., McCoy T.; McEwen, A.S.; McSween, H.Y.; Ming, D.W.; Moore, J.M.; Morris, R.V.; Parker, T.J.; Rice, Jr. J.W.; Ruff, S.; Schmidt, M.; Schröder, C.; Soderblom, L.A.; & Yen, A. (2007). Pyroclastic activity at home plate in Gusev Crater, Mars. Science, 316(5825), 738-742. https://doi.org/10.1126/science.1139045

Toulkeridis, T. (2011). Volcanic Galápagos Volcánico. Ediecuatorial, Quito, Ecuador: 364pp.

Toulkeridis, T.; Arroyo, C. R.; Cruz D'Howitt, M.; Debut, A.; Vaca, A. V.; Cumbal, L.; Mato, F.; & Aguilera, E. (2015). Evaluation of the initial stage of the reactivated Cotopaxi volcano-analysis of the first ejected fine-grained material. Natural Hazards and Earth System Sciences Discussions, 3, 6947-6976. https://doi.org/10.5194/nhessd-3-6947-2015

Trejos E.M., Silva L.F.O., Hower J.C., Flores E.M.M., González C.M., Pachón J.E., Aristizábal B.H. (2021). Volcanic emissions and atmospheric pollution: A study of nanoparticles. Geosciences Frontiers, 12(2), 746-755.

Vespermann, D.; & Schmincke, H.-U. (2000). Scoria cones and tuff rings. In: Sigurdsson, H., Houghton, B.F., McNutt, S.R., Rymer, H., Stix, J. (Eds.), Encyclopedia of Volcanoes. Academic Press, San Diego, pp. 683-694.

White, J. D. L.; & Houghton, B. F. (2006). Primary volcaniclastic rocks. Geology, 34(8), 677-680. https://doi.org/10.1130/G22346.1

White, W. M.; McBirney, A. R.; & Duncan, R. A. (1993). Petrology and geochemistry of the Galápagos Islands: Portrait of a pathological mantle plume. Journal of Geophysical Research: Solid Earth, 98(B11), 19533-19563. https://doi.org/10.1029/93JB02018

Williams O.A. (2011). Nanocrystalline diamond: Diamond & Related Materials, Elsevier. 20, 621-640. https://doi.org/10.1016/j.diamond.2011.02.015

Wilson, L.; & Head, J. W. (1994). Mars: Review and analysis of volcanic eruption theory and relationships to observed landforms. Reviews of Geophysics, 32(3), 221-263. https://doi.org/10.1029/94RG01113

Wohletz, K. H. (1983). Mechanisms of hydrovolcanic pyroclast formation: Grain size, scanning electron microscopy, and experimental results. J. Volcanol. Geotherm. Res, 17, 31-63. https://doi.org/10.1016/0377-0273(83)90061-6

Wood, C. A. (1980). Morphometric evolution of cinder cones. J. Volcanol. Geotherm. Res. 7, 387-413. https://doi.org/10.1016/0377-0273(80)90040-2

Yun, S.-H.; Segall, P.; & Zebker, H.A. (2006). Constraints on magma chamber geometry at Sierra Negra Volcano, Galápagos Islands, based on InSAR observations. Journal of Volcanology and Geothermal Research, 150, 232-243. https://doi.org/10.1016/j.jvolgeores.2005.07.009

Zimanowski, B.; Buettner, R.; Lorenz, V.; & Haefele, H.-G. (1997). Fragmentation of basaltic melt in the course of explosive volcanism. J. Geophys. Res. 102, 803-814. https://doi.org/10.1029/96JB02935

Publicado

2021-07-31

Número

Sección

Artículos científicos originales (arbitrados por pares académicos)

Comentarios (ver términos de uso)

Artículos más leídos del mismo autor/a