Fuentes de pensamiento creativo y autoeficacia en estudiantes de Indonesia: Un estudio de métodos mixtos

Autores/as

DOI:

https://doi.org/10.15359/ru.36-1.20

Palabras clave:

Pensamiento creativo, autoeficacia, novedad cognitiva, variedad cognitiva, encuadre cognitivo

Resumen

Cuando se trata de creatividad en matemáticas, los grupos académicos tienden a enfocarse en el ámbito lógico, que incluye fluidez, flexibilidad y originalidad mientras pasan por alto el valor del ámbito afectivo, que incluye autoeficacia, creencias y actitudes. Los objetivos de este estudio fueron 1) investigar hasta qué punto la autoeficacia afecta la capacidad de pensamiento creativo matemático de estudiantes; 2) descubrir las características de estudiantes que tienen una alta capacidad de pensamiento creativo matemático y una alta autoeficacia. Se empleó un enfoque de método mixto, que combinó la entrevista semiestructurada y el análisis de correlación para investigar el efecto de la autoeficacia en la capacidad de pensamiento creativo matemático del estudiantado. Los sujetos participantes del estudio fueron seleccionados de escuelas secundarias (JHS) que se encuentran en la ciudad de Makassar. Noventa y seis estudiantes (42 niños y 54 niñas, de 14 años) completaron un cuestionario de evaluación de su autoeficacia matemática. En general, los resultados demostraron que la autoeficacia tuvo un efecto en la capacidad de pensamiento creativo matemático de estudiantes de JHS. Además, este estudio reveló que era más probable que estudiantes con alta autoeficacia posean una alta capacidad de pensamiento creativo matemático y viceversa. Las características de estudiantes con alta capacidad de pensamiento creativo matemático y alta autoeficacia incluyen ansiedad excesiva, dependencia de experiencias clave, como la capacidad de generar ideas (novedad cognitiva), la capacidad de proponer diversas soluciones (variedad cognitiva), y la capacidad de cambiar las percepciones (encuadre cognitivo).

Referencias

Bandura, A. (2010). Self-efficacy -Bandura. The Corsini Encyclopedia of Psychology, 1–3.

Beghetto, R. A. (2006). Creative self-efficacy: Correlates in middle and secondary students. Creativity Research Journal, 18(4), 447–457. https://doi.org/10.1207/s15326934crj1804_4

Bicer, A., Lee, Y., Perihan, C., Capraro, M. M., & Capraro, R. M. (2020). Considering mathematical creative self-efficacy with problem posing as a measure of mathematical creativity. Educational Studies in Mathematics, 105(3), 457–485. https://doi.org/10.1007/s10649-020-09995-8

Byrge, C., & Tang, C. (2015). Embodied creativity training: Effects on creative self-efficacy and creative production. Thinking Skills and Creativity, 16, 51–61. https://doi.org/10.1016/j.tsc.2015.01.002

Campbell, C. (December, 2008). Book review: Foucault, psychology and the analytics of power by Hook, Derek. Basingstoke: Palgrave MacMillan, 2007, 16, 1–16. https://doi.org/10.1002/casp

Chan, J. C. Y., & Lam, S. F. (2008). Effects of competition on students’ self-efficacy in vicarious learning. British Journal of Educational Psychology, 78(1), 95–108. https://doi.org/10.1348/000709907X185509

Choi, J. N. (2004). Individual and Contextual Predictors of Creative Performance : Creativity Research Journal, 16(2 & 3), 187–199.

Creswell, J. W. (2012). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. In Educational Research, 4. https://doi.org/10.1017/CBO9781107415324.004

Farmer, S. M. (2017). Creative self-efficacy : potential antecedents and relationship to creative performance CREATIVE SELF-EFFICACY : ITS POTENTIAL ANTECEDENTS AND, 45(January 2002), 1137–1148.

Fraenkel, Jack R; Wallen, Norman E; Hyun, H. H. (2011). How to Design Research in Education and Evaluate Research in Education (8th ed) (S. Kiefer (ed.); 8th ed.). McGraw-Hill Education.

Gao, J. (2020). Sources of Mathematics Self-Efficacy in Chinese Students: a Mixed-Method Study with Q-Sorting Procedure. International Journal of Science and Mathematics Education, 18(4), 713–732. https://doi.org/10.1007/s10763-019-09984-1

Goldin, G. A. (2017). Mathematical creativity and giftedness: perspectives in response. ZDM - Mathematics Education, 49(1), 147–157. https://doi.org/10.1007/s11858-017-0837-9

Güss, C. D. & Dörner, D. (2017). The importance of motivation and emotion for explaining human cognition. The Behavioral and Brain Sciences, 40, 38–39. https://doi.org/10.1017/S0140525X17000164

Holton, D., & Clarke, D. (2006). Scaffolding and metacognition. International Journal of Mathematical Education in Science and Technology, 37(2), 127–143. https://doi.org/10.1080/00207390500285818

Huang, M. C. L., Chou, C. Y., Wu, Y. T., Shih, J. L., Yeh, C. Y. C., Lao, A. C. C., Fong, H., Lin, Y. F., & Chan, T. W. (2020). Interest-driven video creation for learning mathematics. In Journal of Computers in Education 7(3). Springer Berlin Heidelberg. https://doi.org/10.1007/s40692-020-00161-w

Hulsizer, H. (2016). Student-produced videos for exam review in mathematics courses. International Journal of Research in Education and Science, 2(2), 271–278. https://doi.org/10.21890/ijres.46577

Ikram, Muhammad, Purwanto, Nengah Parta, I., & Susanto, H. (2020a). Mathematical reasoning required when students seek the original graph from a derivative graph. Acta Scientiae, 22(6), 45–64. https://doi.org/10.17648/acta.scientiae.5933

Ikram, Muhammad, Purwanto, Parta, I. N., & Susanto, H. (2020b). Exploring the potential role of reversible reasoning: Cognitive research on inverse function problems in mathematics. Journal for the Education of Gifted Young Scientists, 8(1), 591–611. https://doi.org/10.17478/jegys.665836

Jaafar, W. M. W. & Ayu, A. F. M. (2010). Mathematics self-efficacy and meta-cognition among university students. Procedia - Social and Behavioral Sciences, 8(December 2013), 519–524. https://doi.org/10.1016/j.sbspro.2010.12.071

Kaufman, J. C., & Beghetto, R. A. (2009). Beyond Big and Little: The Four C Model of Creativity. Review of General Psychology, 13(1), 1–12. https://doi.org/10.1037/a0013688

Kearney, M., & Schuck, S. (2005). Students in the Director’s Seat: Teaching and Learning with Student-generated Video. Edmedia, 2864–2871.

Lai, Y., Zhu, X., Chen, Y., & Li, Y. (2015). Effects of mathematics anxiety and mathematical metacognition on word problem solving in children with and without mathematical learning difficulties. PLoS ONE, 10(6). https://doi.org/10.1371/journal.pone.0130570

Laws, J. (2002). Self-efficacy beliefs and creative performance in adults: A phenomenological investigation. In National Library of Canada (pp. 1–192).

Leikin, R. (2014). Challenging Mathematics with Multiple Solution Tasks and Mathematical Investigations in Geometry. 59–80. https://doi.org/10.1007/978-3-319-04993-9_5

Leikin, R., & Elgrably, H. (2020). Problem posing through investigations for the development and evaluation of proof-related skills and creativity skills of prospective high school mathematics teachers. International Journal of Educational Research, 102(July 2018), 1–13. https://doi.org/10.1016/j.ijer.2019.04.002

Levenson, E. (2013). Tasks that may occasion mathematical creativity: Teachers’ choices. Journal of Mathematics Teacher Education, 16(4), 269–291. https://doi.org/10.1007/s10857-012-9229-9

Liu, C. J., Jack, B. M., & Chiu, H. L. (2008). Taiwan elementary teachers’ views of science teaching self-efficacy and outcome expectations. International Journal of Science and Mathematics Education, 6(1), 19–35. https://doi.org/10.1007/s10763-006-9065-4

Menon, D., & Sadler, T. D. (2018). Sources of Science Teaching Self-Efficacy for Preservice Elementary Teachers in Science Content Courses. International Journal of Science and Mathematics Education, 16(5), 835–855. https://doi.org/10.1007/s10763-017-9813-7

Moores, T. T., Cha-Jan, J. C., & Smith, D. K. (2006). Clarifying the Role of Self-Efficacy and Metacognition as Predictors of Performance: Construct Development and Test. Data Base for Advances in Information Systems, 37, 125–132. https://doi.org/10.1145/1161345.1161360

Moscovici, S., & Marková, I. (2006). The Making of Modern Social Psychology: The Hidden Story of How an International Social Science was Created, 1, 1–296.

Özcan, Z. Ç. & Eren Gümüş, A. (2019). A modeling study to explain mathematical problem-solving performance through metacognition, self-efficacy, motivation, and anxiety. Australian Journal of Education, 63(1), 116–134. https://doi.org/10.1177/0004944119840073

Özsoy, G. (2011). An investigation of the relationship between metacognition and mathematics achievement. Asia Pacific Education Review, 12(2), 227–235. https://doi.org/10.1007/s12564-010-9129-6

Philipp, R. (2007). Mathematics teachers’ beliefs and affect. Second Handbook of Research on Mathematics Teaching and Learning, 257–315.

Rahayuningsih, S, Hasbi, M., Mulyati, M., & Nurhusain, M. (2021). The Effect of Self-Regulated Learning on Students’ Problem-Solving Abilities. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 10(2), 927–939. https://doi.org/10.24127/ajpm.v10i2.3538

Rahayuningsih, S, Sirajuddin, S., & Ikram, M. (2021). Using Open-ended Problem-solving Tests to Identify Students’ Mathematical Creative Thinking Ability. Participatory Educational Research, 8(3), 285–299. https://doi.org/10.17275/per.21.66.8.3

Rahayuningsih, Sri, Sirajuddin, S., & Nasrun, N. (2020). Cognitive flexibility: exploring students’ problem-solving in elementary school mathematics learning. JRAMathEdu (Journal of Research and Advances in Mathematics Education), 6(1), 59–70. https://doi.org/10.23917/jramathedu.v6i1.11630

Runco, M. A. (1996). Personal creativity: Definition and developmental issues. New Directions for Child and Adolescent Development, 1996(72), 3–30. https://doi.org/10.1002/cd.23219967203

Sewell, W. H. (1989). Some Reflections on the Golden Age of Interdisciplinary Social Psychology. Social Psychology Quarterly, 52(2), 88. https://doi.org/10.2307/2786909

Sharma, S., & Gigras, Y. (2017). A Survey. 1953, 87–97. https://doi.org/10.4018/978-1-5225-2154-9.ch006

Singer, F. M., Voica, C., & Pelczer, I. (2017). Cognitive styles in posing geometry problems: implications for assessment of mathematical creativity. ZDM - Mathematics Education, 49(1), 37–52. https://doi.org/10.1007/s11858-016-0820-x

Vasile, C., Marhan, A. M., Singer, F. M., & Stoicescu, D. (2011). Academic self-efficacy and cognitive load in students. Procedia - Social and Behavioral Sciences, 12(February 2014), 478–482. https://doi.org/10.1016/j.sbspro.2011.02.059

Voica, C., Singer, F. M., & Stan, E. (2020). How are motivation and self-efficacy interacting in problem-solving and problem-posing? Educational Studies in Mathematics, 105(3), 487–517. https://doi.org/10.1007/s10649-020-10005-0

Zarch, M. K., & Kadivar, P. (2006). The role of mathematics self-efficacy and mathematics ability in the structural model of mathematics performance. WSEAS Transactions on Mathematics, 5(6), 713–720.

Publicado

2022-02-14

Cómo citar

Fuentes de pensamiento creativo y autoeficacia en estudiantes de Indonesia: Un estudio de métodos mixtos. (2022). Uniciencia, 36(1), 1-14. https://doi.org/10.15359/ru.36-1.20

Número

Sección

Artículos científicos originales (arbitrados por pares académicos)

Cómo citar

Fuentes de pensamiento creativo y autoeficacia en estudiantes de Indonesia: Un estudio de métodos mixtos. (2022). Uniciencia, 36(1), 1-14. https://doi.org/10.15359/ru.36-1.20

Comentarios (ver términos de uso)