Calidad del agua superficial y presiones socioambientales en la microcuenca alta del río Poás

Autores/as

DOI:

https://doi.org/10.15359/ru.36-1.24

Palabras clave:

Calidad del agua, agua superficial, índices de calidad, características socioambientales, microcuenca, Poás

Resumen

El objetivo de esta investigación fue determinar la relación entre la calidad del agua superficial en la parte alta de la microcuenca del río Poás y las principales presiones socioambientales que pueden alterar este factor. Para ello se realizó un estudio exploratorio, con enfoque cuantitativo, donde se identificaron las principales presiones socioambientales que experimenta el recurso hídrico en la zona. Además, se analizó la calidad del agua superficial a través de indicadores físicos, químicos y microbiólogos, para la aplicación de dos índices de calidad. Se encontraron seis presiones socioambientales de impacto negativo al recurso, materializadas a través de acciones puntuales ejecutadas desde el hogar y otras actividades de tipo socioeconómico. A pesar de que la evidencia mostró cumplimiento mayoritario de los parámetros analizados con los criterios de calidad sugeridos a nivel nacional e internacional, los índices revelaron niveles de contaminación incipiente, además de calidad buena y media. Estadísticamente, se encontró que la calidad del agua de la microcuenca no varía espacialmente; sin embargo, sí lo hace de manera temporal, debido a la incidencia de los patrones de lluvia en la zona. Este hallazgo, en conjunto con la determinación de correlaciones significativas entre los parámetros monitoreados, contribuyó a reconocer que los sitios analizados en época lluviosa mantienen mayor relación con parámetros asociados con contaminación orgánica debido a procesos de escorrentía y descarga de agua residual. Por tanto, se plantea la necesidad de coordinar esfuerzos que garanticen la sostenibilidad de la microcuenca, que mejoren la infraestructura sanitaria local, fortalezcan los procesos de gestión del agua y se dirijan al establecimiento de una red de monitoreo desde un marco de referencia con visión de cuenca.

Referencias

Aho, K. (2014). Asbio: A collection of statistical tools for biologists. R Package version, 1-1.

Adegbite, S. A., Adeleke, A. E., Sangoremi, A., & Oladele, E. O. (2018). Seasonal variations of physicochemical characteristics of brewery industry effluent and receiving water of Ikpoba-Oha Rivers, Benin City, Nigeria. Journal of Applied Sciences and Environmental Management, 22(6), 857. https://doi.org/10.4314/jasem.v22i6.3

Alvarado-García, V., Pérez-Gómez, G., & Gastezzi-Arias, P. (2020). Calidad del ecosistema urbano del río Torres, San José, Costa Rica: factores bióticos y abióticos. Cuadernos de Investigación UNED, 12(2), 527–542. https://doi.org/http://dx.doi.org/10.22458/urj.v12i2.3016

Anderson, E. P., Jackson, S., Tharme, R. E., Douglas, M., Flotemersch, J. E., Zwarteveen, M., Lokgariwar, C., Montoya, M., Wali, A., Tipa, G. T., Jardine, T. D., Olden, J. D., Cheng, L., Conallin, J., Cosens, B., Dickens, C., Garrick, D., Groenfeldt, D., Kabogo, J., & Arthington, A. H. (2019). Understanding rivers and their social relations: A critical step to advance environmental water management. WIREs Water, 6(6), 1–21. https://doi.org/10.1002/wat2.1381

Angulo, F. (2020). Patrones e impactos del uso de la energía y el agua en Costa Rica: investigación de base. PEN. https://repositorio.conare.ac.cr/handle/20.500.12337/7985

APHA, AWWA, & WEF. (2012). Standard Methods for the Examination of Water & Wastewater; Rice, E., Baird, R., Eaton, A., Clesceri, L. (Eds.); Port City Press, pp 2–13, 2–64, 2–69, 4–5, 4–92, 4–115, 4–143, 4-152.

Asmat, A., Hazali, N. A., Nor, A. N. M., & Zuhan, F. K. (2018). Seasonal-spatial of Putrajaya Lake Water Quality Parameter (WQP) concentration using Geographic Information System (GIS). International Journal of Engineering and Technology (UAE), 7(3), 176–181. https://doi.org/10.14419/ijet.v7i3.11.15956

Ayandiran, T. A., Fawole, O. O., & Dahunsi, S. O. (2018). Water quality assessment of bitumen polluted Oluwa River, South-Western Nigeria. Water Resources and Industry, 19, 13–24. https://doi.org/10.1016/j.wri.2017.12.002

Bartram, J., & Ballance, R. (1996). Water quality monitoring: a practical guide to the design and implementation of freshwater quality studies and monitoring programmes. E & FN Spon. https://doi.org/10.4324/9780203476796

Blair, R. C., Higgins, J. J., Karniski, W., & Kromrey, J. D. (1994). Multivariate behavioral a study of multivariate permutation tests which may replace Hotelling’ s T2 test in prescribed circumstances. Multivar Behav Res, 29(2), 141–163. https://doi.org/10.1207/s15327906mbr2902_2

Bouwman, A. F., Beusen, A. H. W., & Billen, G. (2009). Human Alteration of the Global Nitrogen and Phosphorus Soil Balances for the Period 1970-2050. Global Biogeochem. Cycles, 23(4), 1–16. https://doi.org/10.1029/2009GB003576

Calvo-Brenes, G., & Mora-Molina, J. (2012). Análisis de la calidad de varios cuerpos de agua superficiales en el GAM y la Península de Osa utilizando el índice holandés. Revista Tecnología En Marcha, 25(5), 37. https://doi.org/10.18845/tm.v25i5.471

Chapman, D. (1996). Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring (pp 1–609). F & FN Spon.

Converse, R. R., Piehler, M. F., & Noble, R. T. (2011). Contrasts in Concentrations and Loads of Conventional and Alternative Indicators of Fecal Contamination in Coastal Stormwater. Water Res. 45(16), 5229–5240. https://doi.org/10.1016/j.watres.2011.07.029

Decreto N.° 33903-MINAE-S de 2007 [Ministerio de Ambiente y Energía, Ministerio de Salud]. Reglamento para la Evaluación y Clasificación de la Calidad de Cuerpo de Agua Superficiales. 17 de setiembre de 2007.

Dirección de Agua. (2020). Estrategia nacional para la recuperación de cuencas urbanas 2020-2030. http://www.da.go.cr/estrategia-rios-limpios/

Fernandes, M. R., Aguiar, F. C., Martins, M. J., Rivaes, R. & Ferreira, M. T. (May, 2020). Long-Term Human-Generated Alterations of Tagus River: Effects of Hydrological Regulation and Land-Use Changes in Distinct River Zones. Catena (1) https://doi.org/10.1016/j.catena.2020.104466

Flanagan, P. (2001). Parameters of Water Quality: Interpretation and Standards. Environmental Protection Agency. https://doi.org/10.1108/dpm.2000.07309aag.008

Global Water Partnership (GWP). (2017). Situación de los recursos hídricos en Centroamérica: Hacia una gestión integrada. Global Water Partnership Central America, 100.

Good, P. (2009). Permutation Test: a practical guide to resampling meth- ods for testing hypotheses. In Bickel P, Diggle P, Fienberg S, Krickeberg K, Olkin I, Wermuth N, Zeger S (Eds.) (2nd ed.). Springer. https://doi.org/10.1007/978-1-4757-3235-1

Gu, Q., Hu, H., Ma, L., Sheng, L., Yang, S., Zhang, X., Zhang, M., Zheng, K., & Chen, L. (2019). Characterizing the spatial variations of the relationship between land use and surface water quality using self-organizing map approach. Ecological Indicators, 102(December 2018), 633–643. https://doi.org/10.1016/j.ecolind.2019.03.017

Helsel, D. R. (2012). Statistics for Censored Environmental Data Using Minitab an R. John Wiley & Sons, Inc. All. https://doi.org/10.1002/9781118162729

Hernando Echeverría, L., Patterson, O., Ruiz, A., Ramos, R., & Garro, L. (2004). Manejo y ordenamiento territorial de cuencas de Costa Rica: El caso de la microcuenca del río Poás. In Revista geográfica de América Central, 40, 101–112.

Herrera-Murillo, J. (2017). Uso y estado de los recursos: Recurso hídrico. Informe Estado de la Nación en Desarrollo Sostenible 2017 (pp. 3–31). Programa Estado de la Nación. http://estadonacion.or.cr

Hu, M., Wang, Y. Du, P., Shui, Y., Cai, A., Lv, C., Bao, Y., Li, Y., Li, S., & Zhang, P. (2019). Tracing the Sources of Nitrate in the Rivers and Lakes of the Southern Areas of the Tibetan Plateau Using Dual Nitrate Isotopes. Sci. Total Environ. 658, 132–140. https://doi.org/10.1016/j.scitotenv.2018.12.149

Hui, L., Daphne, X., Utomo, H. D., Zhi, L., & Kenneth, H. (2011). Correlation between Turbidity and Total Suspended Solids in, 1(3), 313–322. https://doi.org/10.11912/jws.1.3.313-322

Hur, J., & Jung, M. C. (2009). The Effects of Soil Properties on the Turbidity of Catchment Soils from the Yongdam Dam Basin in Korea. Environ. Geochem. Health, 31(3), 365–377. https://doi.org/10.1007/s10653-008-9176-7

Hussain, B., Sultana, T., Sultana, S., Al-Mulhim, N., & Mahboob, S. (2018). Pollutant fate and spatio-temporal variation and degree of sedimentation of industrial- and municipal wastes in Chakbandi drain and River Chenab. Saudi Journal of Biological Sciences, 25(7), 1326–1331. https://doi.org/10.1016/j.sjbs.2018.08.015

Instituto Nacional de Estadística y Censo. (2011). Censo Nacional 2011.

Irvine, K. N., Somogye, E. L., & Pettibone, G. W.(2002). Turbidity, Suspended Solids, and Bacteria Relationships in the Buffalo River Watershed. Middle States Geogr, 35, 42–51.

Jovanelly, T. J., Rodríguez-Montero, L., Sánchez-Gutiérrez, R., Mena-Rivera, L., & Thomas, D. (2020). Evaluating watershed health in Costa Rican national parks and protected areas. Sustainable Water Resources Management, 6(5), 1–14. https://doi.org/10.1007/s40899-020-00431-6

Kändler, M., Blechinger, K., Seidler, C., Pavlů, V., Šanda, M., Dostál, T., Krása, J., Vitvar, T., & Štich, M. (2017). Impact of land use on water quality in the upper Nisa catchment in the Czech Republic and in Germany. Science of the Total Environment, 586, 1316–1325. https://doi.org/10.1016/j.scitotenv.2016.10.221

Kamble, S. M. (2014). Water Pollution and Public Health Issues in Kolhapur City in Maharashtra. International Journal of Scientific and Research Publications, 4(1), 1–6.

Lê, S., Josse, J., & Husson, F. (2008). “FactoMineR: A Package for Multivariate Analysis.” Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01

Lee, L. (2017). NADA: Nondetects and Data Analysis for Environmental Data. R Package version, 1.6-1.1. https://CRAN.R-project.org/package=NADA

Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of Factor Analysis in the Assessment of Groundwater Quality in a Blackfoot Disease Area in Taiwan. Sci. Total Environ, 313 (1–3), 77–89. https://doi.org/10.1016/S0048-9697(02)00683-6

Malaj, E., Von Der Ohe, P. C., Grote, M., Kühne, R., Mondy, C. P., Usseglio-Polatera, P., Brack, W., & Schäfer, R. B. (2014). Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proceedings of the National Academy of Sciences of the United States of America, 111(26), 9549–9554. https://doi.org/10.1073/pnas.1321082111

Masís, F., Valdés, J., Coto, T., & León, S. (2015). Residuos de agroquímicos en sedimentos de ríos, Poás, Costa Rica. Agron. Costaricense, 32(1), 113–123.

Mena-Rivera, L., Vásquez-Bolaños, O., Gómez- Castro, C., Fonseca-Sánchez, A., Rodríguez- Rodríguez, A., & Sánchez-Gutiérrez, R. (2018). Ecosystemic Assessment of Surface Water Quality in the Virilla River: towards Sanitation Processes in Costa Rica. Water, 10(7), 1-16. doi: https://doi.org/10.3390/w10070845

Mena-Rivera, L., Salgado-Silva, V., Benavides-Benavides, C., Coto-Campos, J. M., & Swinscoe, T. H. A. (2017). Spatial and seasonal surface water quality assessment in a tropical urban catchment: Burío River, Costa Rica. Water (Switzerland), 9(8). https://doi.org/10.3390/w9080558

Mendoza, A., Soto-Cortes, G., Priego-Hernandez, G., & Rivera-Trejo, F. (2019). Historical Description of the Morphology and Hydraulic Behavior of a Bifurcation in the Lowlands of the Grijalva River Basin, Mexico. Catena, 176, 343–351. https://doi.org/10.1016/j.catena.2019.01.033

Merck, E. (2005). Microbiology Manual, Fluorocult® LMX Broth Modified. Merck.

Meybeck, M. (2003). Global analysis of river systems: From Earth system controls to Anthropocene syndromes. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1440), 1935–1955. https://doi.org/10.1098/rstb.2003.1379

Mukaka, M. M. (2012). Statistics Corner: A Guide to Appropriate Use of Correlation Coefficient in Medical Research. Malawi Med. J. 24, 69–71.

Njuguna, S. M., Onyango, J. A., Githaiga, K. B., Gituru, R. W., & Yan, X. (2020). Application of multivariate statistical analysis and water quality index in health risk assessment by domestic use of river water. Case study of Tana River in Kenya. Process Safety and Environmental Protection, 133(November 2019), 149–158. https://doi.org/10.1016/j.psep.2019.11.006

Pérez-Gómez, G., Alvarado-García, V., Rodríguez-Rodríguez, A., Herrera, F., & Sánchez-Gutiérrez, R. (2021). Calidad fisicoquímica y microbiológica del agua superficial del río Grande de Tárcoles, Costa Rica: Un enfoque ecológico. UNED Research Journal, 13(1). https://doi.org/https://doi.org/10.22458/urj.v13i1.3148

Peto, R., & Peto, J. (1972). Asymptotically Efficient Rank Invariant Test Procedures. Journal of the Royal Statistical Society, 135(2), 185–207. https://doi.org/10.2307/2344317

Phiri, O., Mumba, P., Moyo, B. H. Z. & Kadewa, W. (2005). Assessment of the impact of industrial effluents on water quality of receiving rivers in urban areas of Malawi. International Journal of Environmental Science and Technology, 2(3), 237–244. https://doi.org/10.1007/BF03325882

Pouladi, P., Afshar, A., Afshar, M. H., Molajou, A., & Farahmand, H. (2019). Agent-based socio-hydrological modeling for restoration of Urmia Lake: Application of theory of planned behavior. Journal of Hydrology, 576(February), 736–748. https://doi.org/10.1016/j.jhydrol.2019.06.080

Prentice, R. L. (1978). Linear rank tests with right censored data. Biometrika, 65(1), 167–169. https://doi.org/10.2307/2335292

Prentice, R. L. & Marek, P. (1979). A Qualitative Discrepancy between Censored Data Rank Tests. Biometrics, 35(4), 861. https://doi.org/10.2307/2530120

Programa Estado de la Nación. (2021). Sexto Estado de la Región 2021. https://estadonacion.or.cr/informes/

Qadir, A., Malik, R. N. & Husain, S. Z. (2008). Spatio-Temporal Variations in Water Quality of Nullah Aik-Tributary of the River Chenab, Pakistan. Environ. Monit. Assess. 140 (1–3), 43–59. https://doi.org/10.1007/s10661-007-9846-4

Quirós Arias, L. & Alfaro Chavarría, C. (2011). Dinámica territorial asociada a la actividad agropecuaria en el cantón de Poás, Alajuela. Revista Geográfica de América Central, 1(46), 155–184.

R Core Team (2020). The R Project for statistical computing. https://www.r-project.org

Sánchez-Gutiérrez, R., & Gómez-Castro, C. (2021). Approaching to water quality modeling processes in a subwatershed. The Virilla River case in Costa Rica. Uniciencia, 35(1), 71–89. https://doi.org/10.15359/RU.35-1.5

Seiyaboh, E., Gijo, A., & Alagha, W. (2016). Spatial and Seasonal Variation in Physico-chemical Quality of Ikoli Creek, Niger Delta, Nigeria. Greener Journal of Environmental Management and Public Safety, 5(5), 104–109. https://doi.org/10.15580/gjemps.2016.5.122116219

Sinharoy, S. S., Pittluck, R., & Clasen, T. (2019). Review of drivers and barriers of water and sanitation policies for urban informal settlements in low-income and middle-income countries. Utilities Policy, 60(August), 100957. https://doi.org/10.1016/j.jup.2019.100957

Sistema de Información Ambiental Territorial de la Amazonia Colombiana. (2020). Presiones socioambientales - metodología http://siatac.co/web/guest/metodologia (accesado, 23 de febrero 2021).

Udeigwe, T. K., Wang, J. J., & Zhang, H. (2007). Predicting Runoff of Suspended Solids and Particulate Phosphorus for Selected Louisiana Soils Using Simple Soil Tests. J. Environ. Qual, 36 (5), 1310–1317. https://doi.org/10.2134/jeq2006.0314

Van Drecht, G., Bouwman, A. F., Harrison, J., & Knoop, J. M. (2009). Global Nitrogen and Phosphate in Urban Wastewater for the Period 1970 to 2050. Global Biogeochem. Cycles. 23 (3), 1–19. https://doi.org/10.1029/2009GB003458

Wantzen, K. M., Ballouche, A., Longuet, I., Bao, I., Bocoum, H., Cissé, L., Chauhan, M., Girard, P., Gopal, B., Kane, A., Marchese, M. R., Nautiyal, P., Teixeira, P., & Zalewski, M. (2016). River Culture: An eco-social approach to mitigate the biological and cultural diversity crisis in riverscapes. Ecohydrology and Hydrobiology, 16(1), 7–18. https://doi.org/10.1016/j.ecohyd.2015.12.003

Waziri, M., & Akinniyi, J. (2012). Assessment of the physicochemical characteristics of rain and runoff water in University of Maiduguri–Nigeria staff quarters. American Journal of Scientific and Industrial Research, 3(2), 99–102. https://doi.org/10.5251/ajsir.2012.3.2.99.102

Wickham, H. (2016). Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4. http://ggplot2.tidyverse.org

Woomer, P. L. (1994). Most probable number counts. Methods of Soil Analysis: Part 2. Microbiological and Biochemical Properties, 5, 59-79. https://doi.org/10.2136/sssabookser5.2.c5

World Economic Forum. (2019). Global Risks Report 2019. Geneva Switzerland, p. 114.

Wu, Z., Wang, X., Chen, Y., Cai, Y., & Deng, J. (2018). Assessing River Water Quality Using Water Quality Index in Lake Taihu Basin, China. Sci. Total Environ. 612, 914–922. https://doi.org/10.1016/j.scitotenv.2017.08.293

Xu, G., Li, P., Lu, K., Tantai, Z., Zhang, J., Ren, Z., Wang, X., Yu, K., Shi, P., & Cheng, Y. (2019). Seasonal Changes in Water Quality and Its Main Influencing Factors in the Dan River Basin. Catena, 173, 131–140. https://doi.org/10.1016/j.catena.2018.10.014

Yu, S., Xu, Z., Wu, W., & Zuo, D. (2016). Effect of Land Use Types on Stream Water Quality under Seasonal Variation and Topographic Characteristics in the Wei River Basin, China. Ecol. Indic, 60, 202–212. https://doi.org/10.1016/j.ecolind.2015.06.029

Ziegler, A. D., Benner, S. G., Tantasirin, C., Wood, S. H., Sutherland, R. A., Sidle, R. C., Jachowski, N., Nullet, M. A., Xi, L. X., Snidvongs, A., Giambelluca, T. W., & Fox, J. M. (2014). Turbidity-based sediment monitoring in northern Thailand: Hysteresis, variability, and uncertainty. Journal of Hydrology, 519(PB), 2020–2039. https://doi.org/10.1016/j.jhydrol.2014.09.010

Publicado

2022-03-10

Número

Sección

Artículos científicos originales (arbitrados por pares académicos)

Comentarios (ver términos de uso)

Artículos más leídos del mismo autor/a