Revisión sobre la síntesis de grafeno por exfoliación en fase líquida: Mecanismos, factores y técnicas

Autores/as

  • Carlos Daniel Galindo-Uribe Departamento de Química, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México, México https://orcid.org/0000-0003-3262-3694
  • Patrizia Calaminici Departamento de Química, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México, México https://orcid.org/0000-0001-9842-4271
  • Omar Solorza-Feria Departamento de Química, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México, México https://orcid.org/0000-0003-2084-0659

DOI:

https://doi.org/10.15359/ru.36-1.35

Palabras clave:

Grafeno, exfoliación, materiales, síntesis

Resumen

El objetivo del presente trabajo es crear un consenso acerca del método de exfoliación en fase líquida (LPE) para la producción de grafeno y, a su vez, conocer las causas y los diversos factores que afectan el rendimiento y la calidad del grafeno obtenido. Para lograr este objetivo, se realiza una revisión bibliográfica sistemática usando el buscador de Google Académico por la extensión de su acervo. En el presente escrito los resultados obtenidos de esta revisión bibliográfica exhaustiva de la LPE de grafeno se ordenan de acuerdo con su relevancia, dando prioridad en conocer las causas y los fenómenos físicos claves relacionados con la LPE. Los artículos centrados en entender los fenómenos físicos y químicos que gobiernan la LPE fueron clasificados en la sección mecanismo, con el fin de tener una mejor comprensión del fenómeno a nivel molecular. Con esta información, se propone una clasificación de acuerdo con las técnicas más comúnmente usadas (sonicación, microfluídica, etc) para lograr un consenso sobre las técnicas que se clasifican dentro del método de LPE de grafeno con base en el mecanismo, lo que da pauta al desarrollo de nuevas técnicas que mejoren significativamente el desempeño de este método. De la revisión sistemática se concluye que el método de exfoliación en fase líquida es un método robusto, atractivo para la industria, de fácil escalabilidad y de alto rendimiento en general dependiendo de las técnicas de preparación. 

Referencias

Abdelkader, A. M. (2015). How to get between the sheets: a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale, 7(16), 6944-6956. https://doi.org/10.1039/C4NR06942K

Amiri, A. N. (2018). A review on liquid-phase exfoliation for scalable production of pure graphene, wrinkled, crumpled and functionalized graphene and challenges. FlatChem, 8, 40-71. https://doi.org/10.1016/j.flatc.2018.03.004

Beel, J. G. (2010). Academic Search Engine Optimization (aseo) Optimizing Scholarly Lit-erature for Google Scholar & Co. Journal of Scholarly Publishing, 41(2), 176-190. https://doi.org/10.1353/scp.0.0082

Botto, L. (2019). Toward Nanomechanical Models of Liquid-Phase Exfoliation of Layered 2D Nanomaterials: Analysis of a π−peel Model. Frontiers in Materials, 6, 302. https://doi.org/10.3389/fmats.2019.00302

Chen, K. W. (2018). Graphene-based materials for flexible energy storage devices. Journal of Energy Chemistry, 27(1), 12-24. https://doi.org/10.1016/j.jechem.2017.08.015

Cheng, Z. L. (2020). Ultrasound-assisted Li+/Na+ co-intercalated exfoliation of graphite into few-layer graphene. Ultrasonics sonochemistry, 66, 105108. https://doi.org/10.1016/j.ultsonch.2020.105108

Choi, C. H. (2020). Microfluidics for Two-Dimensional Nanosheets: A Mini Review. Pro-cesses, 8, 1067. https://doi.org/10.3390/pr8091067

Chung, D. (2016). Graphite Intercalation Compounds. En Reference Module in Materials Science and Materials Engineering (pp. 1-5). https://doi.org/10.1016/B978-0-12-803581-8.02311-0

Ciesielski, A. & Samori, P. (2014). Graphene via sonication assisted liquid-phase exfolia-tion. Chemical Society Reviews, 43(1), 381-398. https://doi.org/10.1039/C3CS60217F

Coleman, J. N. (2013). Liquid exfoliation of defect-free graphene. Accounts of Chemical Research, 46(1), 14-22. https://doi.org/10.1021/ar300009f

Ding, J. Z. (2018). A water-based green approach to large-scale production of aqueous compatible graphene nanoplatelets. Scientific Reports, 8(1), 1-8. https://doi.org/10.1038/s41598-018-23859-5

Du, W. L. (2013). Organic salt-assisted liquid-phase exfoliation of graphite to produce high-quality graphene. Chemical Physics Letters, 568, 198-201. https://dx.doi.org/10.1016/j.cplett.2013.03.060

Geim, A. N. (2007). The rise of graphene. Nature Materials, 6, 183–191. https://doi.org/10.1038/nmat1849

Guardia, L. F.-M.-F.-R.-A. (2011). High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon, 49(5), 1653-1662. https://doi.org/10.1016/j.carbon.2010.12.049

Halim, U. Z. (2013). A rational design of cosolvent exfoliation of layered materials by di-rectly probing liquid–solid interaction. Nature Communications, 4(1), 1-7. https://doi.org/10.1038/ncomms3213

Hernandez, Y. L. (2010). Measurement of multicomponent solubility parameters for gra-phene facilitates solvent discovery. Langmuir, 26(5), 3208-3213. https://doi.org/10.1021/la903188a

Hernandez, Y. N. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 3(9), 563-568. https://doi.org/10.1038/nnano.2008.215

Huang, H. X. (2012). Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation–expansion–microexplosion mechanism. Journal of Materials Chemistry, 22(21), 10452-10456. https://doi.org/10.1039/C2JM00092J

Karagiannidis, P. G. (2017). Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano, 11(3), 2742-2755. https://doi.org/10.1021/acsnano.6b07735

Kim, J. K. (2015). Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control. Nature Communications, 6(1), 1-9. https://doi.org/10.1038/ncomms9294

Kokai, F. S. (2012). Ultrasonication fabrication of high quality multilayer graphene flakes and their characterization as anodes for lithium ion batteries. Diamond and Related Materials, 29, 63-68. https://dx.doi.org/10.1016/j.diamond.2012.07.011

Kovtyukhova, N. I.-S. (2014). Non-oxidative intercalation and exfoliation of graphite by Brønsted acids. Nature Chemistry, 6(11), 957–963. https://doi.org/10.1038/nchem.2054

Lee, X. J.-G. (2019). Review on graphene and its derivatives: Synthesis methods and po-tential industrial implementation. Journal of the Taiwan Institute of Chemical Engi-neers, 98, 163-180. https://doi.org/10.1016/j.jtice.2018.10.028

Li, Z. Y. (2020). Mechanisms of liquid-phase exfoliation for the production of graphene. ACS Nano, 14(9), 10976-10985. https://doi.org/10.1021/acsnano.0c03916

Ma, H. & Shen, Z. (2020). Exfoliation of graphene nanosheets in aqueous media. Ceramics International, 46(14), 21873-21887. https://doi.org/10.1016/j.ceramint.2020.05.314

Manna, K. H. (2016). Toward understanding the efficient exfoliation of layered materials by water-assisted cosolvent liquid-phase exfoliation. Chemistry of materials, 28(21), 7586-7593. https://doi.org/10.1021/acs.chemmater.6b01203

Notley, S. M. (2012). Highly Concentrated Aqueous Suspensions of Graphene through Ul-trasonic Exfoliation with Continuous Surfactant Addition. Langmuir, 28, 14110−14113. https://dx.doi.org/10.1021/la302750e

Parvez, K. L. (2013). Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano, 7(4), 3598-3606. https://doi.org/10.1021/nn400576v

Parviz, D. I. (2016). Challenges in liquid‐phase exfoliation, processing, and assembly of pristine graphene. Advanced Materials, 28(40), 8796-8818. https://doi.org/10.1002/adma.201601889

Paton, K. R. (2014). Scalable production of large quantities of defect-free few-layer gra-phene by shear exfoliation in liquids. Nature Materials, 13(1), 624–630. https://doi.org/10.1038/nmat3944

Perreault, F. D. (2015). Environmental applications of graphene-based nanomaterials. Chemical Society Reviews, 44(16), 5861-5896. https://doi.org/10.1039/C5CS00021A

Raccichini, R. V. (2015). The role of graphene for electrochemical energy storage. Nature Materials, 14(3), 271-279. https://doi.org/10.1038/nmat4170

Rüdorff, W. & Siecke, W. (1958). Graphitsalze von organischen Säuren. Graphit‐trifluoracetat und Graphit‐borfluoriddiacetat. Chemische Berichte, 91(6), 1348-1354. https://doi.org/10.1002/cber.19580910636

Shen, J. H. (2015). Liquid phase exfoliation of two-dimensional materials by directly prob-ing and matching surface tension components. Nano Letters, 15(8), 5449-5454. https://doi.org/10.1021/acs.nanolett.5b01842

Vallés, C. D. (2008). Solutions of Negatively Charged Graphene Sheets and Ribbons. Journal of the American Chemical Society, 130(47), 15802–15804. https://doi.org/10.1021/ja808001a

Wang, Y. Z. (2017). Liquid phase exfoliation of graphite into few-layer graphene by soni-cation and microfluidization. Materials Express, 7(6), 491-499. https://doi.org/10.1166/mex.2017.1395

Xu, Y. C. (2018). Liquid-Phase exfoliation of graphene: An overview on exfoliation media, techniques, and challenges. Nanomaterials, 8(11), 942. https://doi.org/10.3390/nano8110942

Yi, M. S. (2012). Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters. Journal of Physics D: Ap-plied Physics, 46(2), 025301. https://doi.org/10.1088/0022-3727/46/2/025301

Yi, M. S. (2014). Kitchen blender for producing high-quality few-layer graphene. Carbon, 78, 622-626. https://dx.doi.org/10.1016/j.carbon.2014.07.035

Zhang, X. C. (2010). Dispersion of graphene in ethanol using a simple solvent exchange method. Chemical Communications, 46(40), 7539-7541. https://doi.org/10.1039/C0CC02688C

Publicado

2022-06-01

Número

Sección

Artículos científicos originales (arbitrados por pares académicos)

Comentarios (ver términos de uso)

Artículos más leídos del mismo autor/a

1 2 3 4 5 6 7 8 9 10 > >>