Transformación de imágenes en RGB a tarjetas de color de suelo Munsell
DOI:
https://doi.org/10.15359/ru.36-1.36Palabras clave:
espacio de color Munsell, espacio de color RGB, transformación, cartas de color del suelo Munsell, aprendizaje automático, redes neuronalesResumen
[Objetivo] La transformación del espacio de color RGB al de color Munsell es un tema relevante para diferentes tareas como la identificación de: la taxonomía del suelo, materiales orgánicos, materiales rocosos. tipo de piel entre otros. Esta investigación tiene como objetivo desarrollar alternativas basadas en las redes feedforward y las Redes Neuronales Convolucionales para predecir el tono, el valor y el croma en las cartas de color del suelo de Munsell (MSCC) a partir de imágenes RGB. [Metodología] Con el fin de entrenar y probar los modelos, usamos imágenes de los gráficos de colores de suelo de Munsell de las versiones 2000 y 2009 tomadas de Millota et al. (2018). Se utilizó una división de 2856 imágenes en 10% para pruebas, 20% para validación y 70% para entrenamiento con miras a construir los modelos. [Resultados] El mejor enfoque fueron las redes neuronales convolucionales para la clasificación con un 93% de precisión total de la combinación de tono, valor y croma (consta de tres CNN, uno para la predicción de tono, otra para la de valor y la última para la de croma), aunque los tres mejores modelos muestran cercanía entre la predicción y los valores reales según la distancia CIEDE2000. Los casos clasificados incorrectamente con este enfoque tuvieron un promedio CIEDE2000 de 0.27 y una desviación estándar de 1.06. [Conclusiones] Los modelos demostraron un mejor reconocimiento de color en entornos no controlados que la transformación de Centore, la cual es el método clásico para transformar de RGB a HVC. Los resultados fueron prometedores, pero el modelo debe evaluarse ampliamente con imágenes reales del suelo para clasificar su color.
Referencias
Afifi, M. & Brown, M. S. (2019). Sensor-independent illumination estimation for DNN models. arXiv preprint arXiv:1912.06888
Centore, P. (2011). An open‐source inversion algorithm for the Munsell renotation. Color Research & Application, 37(6), 455-464. https://doi.org/10.1002/col.20715
Domínguez Soto, J. M., Román Gutiérrez, A. D., Prieto García, F. & Acevedo Sandoval, O. (2018). Sistema de Notación Munsell y CIELab como herramienta para evaluación de color en suelos. Revista Mexicana de Ciencias Agrícolas, 3(1), 141–155. https://doi.org/10.29312/remexca.v3i1.1489
Gómez-Robledo, L., López-Ruiz, N., Melgosa, M., Palma, A. J., Capitán-Vallvey, L. F. & Sánchez-Marañón, M. (2013). Using the mobile phone as Munsell soil-colour sensor: An experiment under controlled illumination conditions. Computers and Electronics in Agriculture, 99, 200–208. https://doi.org/10.1016/j.compag.2013.10.002
Hernandez-Juarez, D., Parisot, S., Busam, B., Leonardis, A., Slabaugh, G. & McDonagh, S. (2020). A Multi-Hypothesis Approach to Color Constancy. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr42600.2020.00234
Ibáñez-Asensio, S., Marqués-Mateu, A., Moreno-Ramón, H. & Balasch, S. (2013). Statistical relationships between soil colour and soil attributes in semiarid areas. Biosystems Engineering, 116(2), 120–129. https://doi.org/10.1016/j.biosystemseng.2013.07.013
León, K., Mery, D., Pedreschi, F. & León, J. (2006). Color measurement in L∗a∗b∗ units from RGB digital images. Food Research International, 39(10), 1084–1091. https://doi.org/10.1016/j.foodres.2006.03.006
Marquardt, D. W. (1963). An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431–441. https://doi.org/10.1137/0111030
Milotta, F. L. M., Stanco, F. & Tanasi, D. (2017). ARCA (Automatic Recognition of Color for Archaeology): A Desktop Application for Munsell Estimation. Lecture Notes in Computer Science, 661–671. https://doi.org/10.1007/978-3-319-68548-9_60
Milotta, F. L. M., Stanco, F., Tanasi, D. & Gueli, A. M. (2018a). Munsell Color Specification using ARCA (Automatic Recognition of Color for Archaeology). Journal on Computing and Cultural Heritage, 11(4), 1–15. https://doi.org/10.1145/3216463
Milotta, F. L. M., Quattrocchi, C., Stanco, F., Tanasi, D., Pasquale, S. & Gueli, A. M. (2018b). ARCA 2.0: Automatic Recognition of Color for Archaeology through a Web-Application. 2018 Metrology for Archaeology and Cultural Heritage (MetroArchaeo). https://doi.org/10.1109/metroarchaeo43810.2018.9089781
Milotta, F. L. M., Furnari, G., Quattrocchi, C., Pasquale, S., Allegra, D., Gueli, A. M., … Tanasi, D. (2020). Challenges in automatic Munsell color profiling for cultural heritage. Pattern Recognition Letters, 131, 135–141. https://doi.org/10.1016/j.patrec.2019.12.008
Munsell Soil Color Charts. (2000). The Year 2000 revised washable edition. Michigan, USA: Munsell Color 4300 44th Street SE, GrandRapids, MI 49512, USA; 2000.
Pegalajar, M. C., Sánchez-Marañón, M., Baca Ruíz, L. G., Mansilla, L. & Delgado, M. (2018). Artificial Neural Networks and Fuzzy Logic for Specifying the Color of an Image Using Munsell Soil-Color Charts. Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations, 699–709. doi:10.1007/978-3-319-91473-2_59
Sánchez-Marañón, M., Huertas, R. & Melgosa, M. (2005). Colour variation in standard soil-colour charts. Soil Research, 43(7), 827. https://doi.org/10.1071/sr04169
Stanco, F., Tanasi, D., Bruna, A. & Maugeri, V. (2011). Automatic Color Detection of Archaeological Pottery with Munsell System. Lecture Notes in Computer Science, 337–346. https://doi.org/10.1007/978-3-642-24085-0_35
Viscarra-Rossel, R. A., Minasny, B., Roudier, P. & McBratney, A. B. (2006). Colour space models for soil science. Geoderma, 133(3-4), 320–337. https://doi.org/10.1016/j.geoderma.2005.07.017
Yang, Y., Ming, J., & Yu, N. (2012). Color Image Quality Assessment Based on CIEDE2000. Advances in Multimedia, 2012, 1–6. https://doi.org/10.1155/2012/273723
Descargas
Publicado
Número
Sección
Licencia
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
1. Los autores garantizan a la revista el derecho de ser la primera publicación del trabajo al igual que licenciado bajo una Creative Commons Attribution License que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en esta revista.
2. Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
3. Los autores han afirmado poseer todos los permisos para usar los recursos que utilizaron en el artículo (imágenes, tablas, entre otros) y asumen la responsabilidad total por daños a terceros.
4. Las opiniones expresadas en el artículo son responsabilidad de los autores y no necesariamente representan la opinión de los editores ni de la Universidad Nacional.
Revista Uniciencia y todas sus producciones se encuentran bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
No existe costo por acceso, revisión de propuestas ni publicación para autores y lectores.