La vía de los esfingolípidos como biosensor de la quimiosensibilidad al cáncer: Una prueba de principio
DOI:
https://doi.org/10.15359/ru.36-1.44Palabras clave:
Cáncer, quimiosensibilidad tumoral, esfingolípidos, biología de sistemas, quimioterapia, lógica difusaResumen
El cáncer es una enfermedad genética compleja con opciones terapéuticas limitadas, debido a la heterogeneidad tumoral y a la aparición de multirresistencia a los fármacos. La vía metabólica de los esfingolípidos (SL) se caracteriza por ser capaz de integrar diferentes tipos de señales de estrés celular y definir la supervivencia celular. Por lo tanto, sugerimos estudiar las perturbaciones en la vía de los esfingolípidos (SLP) causadas por fármacos quimioterapéuticos utilizando un enfoque de biología de sistemas y evaluar su funcionalidad como sensor de respuesta a fármacos. Usamos un sensor de esfingomielina-BODIPY (SM-BOD) para estudiar el metabolismo de SL mediante citometría de flujo e imágenes de células vivas en diferentes modelos de cáncer. Para decodificar la complejidad de la ruta, implementamos modelos de mezcla gaussianos, modelos de ecuaciones diferenciales ordinarias, algoritmos de clasificación no supervisados y un modelo de lógica difusa para evaluar su utilidad como sensor de respuesta a la quimioterapia. Nuestros resultados muestran que los fármacos quimioterapéuticos perturban la SLP de diferentes formas y de una manera específica de la línea celular. Además, encontramos que pocas características de fluorescencia de SM-BOD predicen la quimiosensibilidad con alta precisión. Finalmente, encontramos que la composición relativa de especies de SL parece contribuir a la citotoxicidad resultante de muchos tratamientos. Este informe ofrece un marco conceptual y matemático para desarrollar modelos matemáticos personalizados para predecir y mejorar la terapia del cáncer.
Referencias
Al Daoud, E., & Al-Daoud, E. (2010). Cancer Diagnosis Using Modified Fuzzy Network. Universal Journal of Computer Science and Engineering Technology, 1(2), 73-78. https://www.researchgate.net/publication/49582994
Barteneva, N. S., Fasler-Kan, E., & Vorobjev, I. A. (2012). Imaging flow cytometry: coping with heterogeneity in biological systems. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society, 60(10), 723-733. https://doi.org/10.1369/0022155412453052
Bensimon, A., Heck, A. J. R., & Aebersold, R. (2012). Mass spectrometry-based proteomics and network biology. Annual Review of Biochemistry, 81, 379-405. https://doi.org/10.1146/annurev-biochem-072909-100424
Bonhoure, E., Pchejetski, D., Aouali, N., Morjani, H., Levade, T., Kohama, T., & Cuvillier, O. (2006). Overcoming MDR-associated chemoresistance in HL-60 acute myeloid leukemia cells by targeting sphingosine kinase-1. Leukemia, 20(1), 95-102. https://doi.org/10.1038/sj.leu.2404023
Bosl, W. J. (2007). Systems biology by the rules: hybrid intelligent systems for pathway modeling and discovery. BMC Systems Biology, 1, 13. https://doi.org/10.1186/1752-0509-1-13
Chai, L., McLaren, R. P., Byrne, A., Chuang, W.-L., Huang, Y., Dufault, M. R., … Jiang, Y. A. (2011). The chemosensitizing activity of inhibitors of glucosylceramide synthase is mediated primarily through modulation of P-gp function. International Journal of Oncology, 38(3), 701-711. https://doi.org/10.3892/ijo.2010.888
Chuan Yang, Caibo Yang, Yosef Yarden, K.W.To, K. & Liwu Fu. (2021). The prospects of tumor chemosensitivity testing at the single-cell level. Drug Resistance Updates, 54. https://doi.org/10.1016/j.drup.2020.100741
Dupre, T. V., Doll, M. A., Shah, P. P., Sharp, C. N., Siow, D., Megyesi, J., … Siskind, L. J. (2017). Inhibiting glucosylceramide synthase exacerbates cisplatin-induced acute kidney injury. Journal of Lipid Research, 58(7), 1439-1452. https://doi.org/10.1194/jlr.M076745
Dyatlovitskaya, E. V., Kandyba, A. G., Kozlov, A. M., & Somova, O. G. (2001). Sphinganine in sphingomyelins of tumors and mouse regenerating liver. Biochemistry (Moscow), 66(5), 502-504. https://doi.org/10.1023/A:1010250600604
Erlich, S., Miranda, S. R., Visser, J. W., Dagan, A., Gatt, S., & Schuchman, E. H. (1999). Fluorescence-based selection of gene-corrected hematopoietic stem and progenitor cells from acid sphingomyelinase-deficient mice: implications for Niemann-Pick disease gene therapy and the development of improved stem cell gene transfer procedures. Blood, 93(1), 80-86. https://doi.org/10.1182/blood.v93.1.80
Fernandis, A. Z., & Wenk, M. R. (2009). Lipid-based biomarkers for cancer. Journal of Chromatography B, 877(26), 2830-2835. https://doi.org/10.1016/j.jchromb.2009.06.015
Glaysher, S., & Cree, I. A. (2011). Cell Sensitivity Assays: The ATP-based Tumor Chemosensitivity Assay. In Methods in molecular biology (Clifton, N.J.), 731, 247-257. https://doi.org/10.1007/978-1-61779-080-5_21
Guillermet-Guibert, J., Davenne, L., Pchejetski, D., Saint-Laurent, N., Brizuela, L., Guilbeau-Frugier, C., … Bousquet, C. (2009). Targeting the sphingolipid metabolism to defeat pancreatic cancer cell resistance to the chemotherapeutic gemcitabine drug. Molecular Cancer Therapeutics, 8(4), 809-820. https://doi.org/10.1158/1535-7163.MCT-08-1096
Hannun, Y. A., & Obeid, L. M. (2008). Principles of bioactive lipid signalling: Lessons from sphingolipids. Nature Reviews Molecular Cell Biology, 9(2), 139-150. https://doi.org/10.1038/nrm2329
Iessi, E., Marconi, M., Manganelli, V., Sorice, M., Malorni, W., Garofalo, T., & Matarrese, P. (2020). On the role of sphingolipids in cell survival and death. In International Review of Cell and Molecular Biology 1(351). https://doi.org/10.1016/bs.ircmb.2020.02.004
Kenchegowda, M., Rahamathulla, M., Hani, U., Begum, M. Y., Guruswamy, S., Osmani, R. A. M., … Gowda, D. V. (2022). Smart Nanocarriers as an Emerging Platform for Cancer Therapy: A Review. Molecules, 27(1). https://doi.org/10.3390/molecules27010146
Kitano, H. (2004). Cancer as a robust system: Implications for anticancer therapy. Nature Reviews Cancer, 4(3), 227-235. https://doi.org/10.1038/nrc1300
Koval, M., & Pagano, R. E. (1991). Intracellular transport and metabolism of sphingomyelin. Biochimica et Biophysica Acta, 1082(2), 113-125. https://doi.org/10.1016/0005-2760(91)90184-j
Kroll, A., Cho, H. E., & Kang, M. H. (2020). Antineoplastic Agents Targeting Sphingolipid Pathways. Frontiers in Oncology, 10, 833. https://doi.org/10.3389/fonc.2020.00833
Lacour, S., Hammann, A., Grazide, S., Lagadic-Gossmann, D., Athias, A., Sergent, O., … Dimanche-Boitrel, M.-T. (2004). Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Cancer Research, 64(10), 3593-3598. https://doi.org/10.1158/0008-5472.CAN-03-2787
Lippert, T. H., Ruoff, H.-J., & Volm, M. (2008). Intrinsic and acquired drug resistance in malignant tumors. The main reason for therapeutic failure. Arzneimittel-Forschung, 58(6), 261-264. https://doi.org/10.1055/s-0031-1296504
Lukow, D. A., & Sheltzer, J. M. (2021). Chromosomal instability and aneuploidy as causes of cancer drug resistance. Trends in Cancer, 8(1), 43-53. https://doi.org/10.1016/j.trecan.2021.09.002
Machala, M., Procházková, J., Hofmanová, J., Králiková, L., Slavík, J., Tylichová, Z., … Vondráček, J. (2019). Colon cancer and perturbations of the sphingolipid metabolism. International Journal of Molecular Sciences, 20(23). https://doi.org/10.3390/ijms20236051
Molina-Mora, J. A., Kop-Montero, M., Quirós-Fernández, I., Quirós, S., Crespo-Mariño, J. L. & Mora-Rodríguez, R. A. (2018). A hybrid mathematical modeling approach of the metabolic fate of a fluorescent sphingolipid analogue to predict cancer chemosensitivity. Computers in Biology and Medicine, 97(April), 8-20. https://doi.org/10.1016/j.compbiomed.2018.04.008
Molina-Mora, J. A., & Mora-Rodríguez, R. A. (2016). Identification of cancer chemosensitivity by ODE and GMM modeling of heterogeneous cellular response to perturbations in fluorescent sphingolipid metabolism. 2016, IEEE 36th Central American and Panama Convention, CONCAPAN 2016. https://doi.org/10.1109/CONCAPAN.2016.7942347
Molino, S., Tate, E., McKillop, W., & Medin, J. A. (2017). Sphingolipid pathway enzymes modulate cell fate and immune responses. Immunotherapy, 9(14), 1185-1198. https://doi.org/10.2217/imt-2017-0089
Mora-Rodríguez, R. A., & Molina-Mora, J. A. (2017). Characterization of heterogeneous response to chemotherapy by perturbation-based modeling of fluorescent sphingolipid metabolism in cancer cell subpopulations. 2016 IEEE 36th Central American and Panama Convention, CONCAPAN 2016. https://doi.org/10.1109/CONCAPAN.2016.7942346
Mora, R., Dokic, I., Kees, T., Hüber, C. M., Keitel, D., Geibig, R., … Régnier-Vigouroux, A. (2010). Sphingolipid rheostat alterations related to transformation can be exploited for specific induction of lysosomal cell death in murine and human glioma. Glia, 58(11), 1364-1383. https://doi.org/10.1002/glia.21013
Morales, A., Lee, H., Goñi, F. M., Kolesnick, R., & Fernández-Checa, J. C. (2007). Sphingolipids and cell death. Apoptosis, 12(5), 923-939. https://doi.org/10.1007/s10495-007-0721-0
Ogretmen, B. (2006). Sphingolipids in cancer: Regulation of pathogenesis and therapy. FEBS Letters, 580(23), 5467-5476. https://doi.org/10.1016/j.febslet.2006.08.052
Ogretmen, B. (2017). Sphingolipid metabolism in cancer signalling and therapy. Nature Reviews Cancer, 18(1), 33-50. https://doi.org/10.1038/nrc.2017.96
Quirós-Fernández, I., Molina-Mora, JA, Kop-Monteo, M., Salas-Hidalgo. E. & Mora-Rodríguez, R. (2018). Predicting cancer chemosensitivity based on intensity/distribution profiles of cells loaded with a fluorescent sphingolipid analogue. 2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), 1-8. https://doi.org/10.1109/iwobi.2018.8464199
Singh, D. K., Ku, C. J., Wichaidit, C., Steininger, R. J., Wu, L. F., & Altschuler, S. J. (2010). Patterns of basal signaling heterogeneity can distinguish cellular populations with different drug sensitivities. Molecular Systems Biology, 6(369), 1-10. https://doi.org/10.1038/msb.2010.22
Singh, R. D., Marks, D. L. & Pagano, R. E. (2007). Using fluorescent sphingolipid analogs to study intracellular lipid trafficking. Current Protocols in Cell Biology. Boardhttps://doi.org/10.1002/0471143030.cb2401s35
Slack, M. D., Martinez, E. D., Wu, L. F., & Altschuler, S. J. (2008). Characterizing heterogeneous cellular responses to perturbations. Proceedings of the National Academy of Sciences of the United States of America, 105(49), 19306-19311. https://doi.org/10.1073/pnas.0807038105
Solomonov, A. V., Rumyantsev, E. V., Kochergin, B. A., & Antina, E. V. (2014). The Interaction of BODIPY with bovine serum albumin and its bilirubin complex. Biophysics, 59(1), 35-42. https://doi.org/10.1134/S0006350914010217
Tepper, A. D., Ruurs, P., Wiedmer, T., Sims, P. J., Borst, J., & Van Blitterswijk, W. J. (2000). Sphingomyelin hydrolysis to ceramide during the execution phase of apoptosis results from phospholipid scrambling and alters cell-surface morphology. Journal of Cell Biology, 150(1), 155-164. https://doi.org/10.1083/jcb.150.1.155
Torshabi, A. E., Riboldi, M., Fooladi, A. A. I., Mosalla, S. M. M., & Baroni, G. (2013). An adaptive fuzzy prediction model for real time tumor tracking in radiotherapy via external surrogates. Journal of Applied Clinical Medical Physics, 14(1), 102-114. https://doi.org/10.1120/jacmp.v14i1.4008
Truman, J. P., García-Barros, M., Obeid, L. M., & Hannun, Y. A. (2014). Evolving concepts in cancer therapy through targeting sphingolipid metabolism. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1841(8), 1174-1188. https://doi.org/10.1016/j.bbalip.2013.12.013
Van Meer, G., Wolthoorn, J., & Degroote, S. (2003). The fate and function of glycosphingolipid glucosylceramide. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1433), 869–873. https://doi.org/10.1098/rstb.2003.1266
Descargas
Publicado
Número
Sección
Licencia
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
1. Los autores garantizan a la revista el derecho de ser la primera publicación del trabajo al igual que licenciado bajo una Creative Commons Attribution License que permite a otros compartir el trabajo con un reconocimiento de la autoría del trabajo y la publicación inicial en esta revista.
2. Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
3. Los autores han afirmado poseer todos los permisos para usar los recursos que utilizaron en el artículo (imágenes, tablas, entre otros) y asumen la responsabilidad total por daños a terceros.
4. Las opiniones expresadas en el artículo son responsabilidad de los autores y no necesariamente representan la opinión de los editores ni de la Universidad Nacional.
Revista Uniciencia y todas sus producciones se encuentran bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
No existe costo por acceso, revisión de propuestas ni publicación para autores y lectores.